On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 64-79.

Voir la notice de l'article provenant de la source EDP Sciences

Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front waves with speeds close to that of the (unique) sharp-front solution, for the particular equation ut = (uux)x + u(1 − u). Using singular perturbation theory, the author derives an asymptotic approximation to the wave, which gives valuable information about the structure of smooth-front solutions. The approximation compares well with numerical results.
DOI : 10.1051/mmnp/20105505

J.A. Sherratt 1

1 Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
@article{MMNP_2010_5_5_a4,
     author = {J.A. Sherratt},
     title = {On the {Form} of {Smooth-Front} {Travelling} {Waves} in a {Reaction-Diffusion} {Equation} with {Degenerate} {Nonlinear} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {64--79},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/}
}
TY  - JOUR
AU  - J.A. Sherratt
TI  - On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 64
EP  - 79
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/
DO  - 10.1051/mmnp/20105505
LA  - en
ID  - MMNP_2010_5_5_a4
ER  - 
%0 Journal Article
%A J.A. Sherratt
%T On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
%J Mathematical modelling of natural phenomena
%D 2010
%P 64-79
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/
%R 10.1051/mmnp/20105505
%G en
%F MMNP_2010_5_5_a4
J.A. Sherratt. On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 64-79. doi : 10.1051/mmnp/20105505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/

[1] D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynamics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980.

[2] B.P. Ayati, G.F. Webb, A.R.A. Anderson Computational methods and results for structured multiscale models of tumor invasion Multiscale Modeling & Simulation 2006 1 20

[3] R.D. Benguria, M.C. Depassier Speed of fronts of the reaction-diffusion equation Phys. Rev. Lett. 1996 1171 1173

[4] Z. Biró Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type Adv. Nonlinear Stud. 2002 357 371

[5] A.Q. Cai, K.A. Landman, B.D. Hughes Multi-scale modelling of a wound healing cell migration assay J. Theor. Biol. 2007 576 594

[6] I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, I.G. Ron Continuous and discrete models of cooperation in complex bacterial colonies Fractals 1999 235 247

[7] P. Feng, Z. Zhou Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony Comm. Pure Appl. Anal. 2007 1145 1165

[8] R.A. Fisher The wave of advance of advantageous genes Ann. Eugenics 1937 353 369

[9] G. García-Ramos, F. Sànchez-Garduño, P.K. Maini Dispersal can sharpen parapatric boundaries on a spatially varying environment Ecology 2000 749 760

[10] R.A. Gatenby, E.T. Gawlinski A reaction-diffusion model of cancer invasion Cancer Res. 1996 4740 4743

[11] B.H. Gilding, R. Kersner A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions J. Phys. A: Math. Gen. 2005 3367 3379

[12] W.S.C. Gurney, R.M. Nisbet The regulation of inhomogeneous population J. Theor. Biol. 1975 441 457

[13] W.S.C. Gurney, R.M. Nisbet A note on nonlinear population transport J. Theor. Biol. 1976 249 251

[14] A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, D. Thomson. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8 (2005), 91-101.

[15] J.J. Hellmann, J.E. Byers, B.G. Bierwagen, J.S. Dukes Five potential consequences of climate change for invasive species Conserv. Biol. 2008 534 543

[16] D. Hilhorst, R. Kersner, E. Logak, M. Mimura Interface dynamics of the Fisher equation with degenerate diffusion J. Differential Equations 2008 2870 2889

[17] E.J. Hinch. Perturbation Methods. Cambridge University Press, 1991.

[18] S. Kamin, P. Rosenau Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation Rend. Mat. Acc. Lincei 2004 271 280

[19] S. Kamin, P. Rosenau Emergence of waves in a nonlinear convection-reaction-diffusion equation Adv. Nonlinear Stud. 2004 251 272

[20] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada Modeling spatio-temporal patterns generated by Bacillus subtilis J. Theor. Biol. 1997 177 185

[21] J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, 1996.

[22] S.Y. Kim, R. Torres, H. Drummond Simultaneous positive and negative density-dependent dispersal in a colonial bird species Ecology 2009 230 239

[23] F. Lutscher Density-dependent dispersal in integrodifference equations J. Math. Biol. 2008 499 524

[24] P.K. Maini, S. Mcelwain, D. Leavesley A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells Tissue Eng. 2004 475 482

[25] L. Malaguti, C. Marcelli Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations Advanced Nonlinear Studies 2005 223 252

[26] L. Malaguti, C. Marcelli Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations J. Differential Equations 2003 471 496

[27] M.B.A. Mansour Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation Applied Mathematical Modelling 2008 240 247

[28] E. Matthysen Density-dependent dispersal in birds and mammals Ecography 2005 403 416

[29] G.S. Medvedev, K. Ono, P.J. Holmes Travelling wave solutions of the degenerate Kolmogorov-Petrovski-Piskunov equation Eur. J. Appl. Math. 2003 343 367

[30] W.I. Newman Some exact solutions to a nonlinear diffusion problem in population genetics and combustion J. Theor. Biol. 1980 325 334

[31] A. Okubo, A. Hastings, T. Powell. Population dynamics in temporal and spatial domains. In: A. Okubo, S.A. Levin (eds.) Diffusion and ecological problems: modern perspectives, pp. 298-373. Springer, New York, 2001.

[32] K.J. Painter, J.A. Sherratt Modelling the movement of interacting cell populations J. Theor. Biol. 2003 327 339

[33] B.-E. Saether, S. Engen, R. Lande Finite metapopulation models with density-dependent migration and stochastic local dynamics Proc. R. Soc. Lond. B 1999 113 118

[34] F. Sànchez-Garduño, P.K. Maini Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations J. Math. Biol. 1994 163 192

[35] F. Sànchez-Garduño, P.K. Maini An approximation to a sharp front type solution of a density dependent reaction-diffusion equation Appl. Math. Lett. 1994 47 51

[36] F. Sànchez-Garduño, P.K. Maini Travelling wave phenomena in some degenerate reaction-diffusion equations J. Differential Equations 1995 281 319

[37] F. Sànchez-Garduño, P.K. Maini, E. Kappos A review on travelling wave solutions of one-dimensional reaction diffusion equations with non-linear diffusion term FORMA 1996 45 59

[38] F. Sànchez-Garduño, E. Kappos, P.K. Maini A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations IMA J. Appl. Math. 1996 211 221

[39] R.A. Satnoianu, P.K. Maini, F. Sànchez-Garduño, J.P. Armitage Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation Discrete and Continuous Dynamical Systems B 2001 339 362

[40] B.G. Sengers, C.P. Please, R.O.C. Oreffo Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration J. R. Soc. Interface 2007 1107 1117

[41] J.A. Sherratt Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations Proc. R. Soc. Lond. A 2000 2365 2386

[42] J.A. Sherratt, J.D. Murray Models of epidermal wound healing Proc. R. Soc. Lond. B 1990 29 36

[43] J.A. Sherratt, B.P. Marchant Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion Appl. Math. Lett. 1996 33 38

[44] J.A. Sherratt, M.A.J. Chaplain A new mathematical model for avascular tumour growth J. Math. Biol. 2001 291 312

[45] N. Shigesada, K. Kawasaki, E. Teramoto Spatial segregation of interacting species J. Math. Biol. 1979 83 99

[46] M.J. Simpson, K.A. Landman, K. Bhaganagarapu Coalescence of interacting cell populations J. Theor. Biol. 2007 525 543

[47] M.J. Simpson, K.A. Landman, B.D. Hughes, D.F. Newgreen Looking inside an invasion wave of cells using continuum models: proliferation is the key J. Theor. Biol. 2006 343 360

[48] J.G. Skellam Random dispersal in theoretical populations Biometrika 1951 196 218

[49] M.J. Smith, J.A. Sherratt, X. Lambin The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations J. Theor. Biol. 2008 264 274

[50] A. Tremel, A. Cai, N. Tirtaatmadja, B.D. Hughes, G.W. Stevens, K.A. Landman, A.J. Oconnor Cell migration and proliferation during monolayer formation and wound healing Chem. Eng. Sci. 2009 247 253

[51] R.R. Veit, M.A. Lewis Integrodifference models for persistence in fragmented habitats Bull. Math. Biol. 1997 107 137

[52] Y. Wu Existence of stationary solutions with transition layers for a class of cross-diffusion systems Proc. R. Soc. Ed. 2002 1493 1511

[53] J. Ylikarjula, S. Alaja, J. Laakso, D. Tesar Effects of patch number and dispersal patterns on population dynamics and synchrony J. Theor. Biol. 2000 377 387

[54] H.Y. Zhu, W. Yuan, C.H. Ou Justification for wavefront propagation in a tumour growth model with contact inhibition Proc. R. Soc. Lond. A 2008 1257 1273

Cité par Sources :