Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_5_a4, author = {J.A. Sherratt}, title = {On the {Form} of {Smooth-Front} {Travelling} {Waves} in a {Reaction-Diffusion} {Equation} with {Degenerate} {Nonlinear} {Diffusion}}, journal = {Mathematical modelling of natural phenomena}, pages = {64--79}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2010}, doi = {10.1051/mmnp/20105505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/} }
TY - JOUR AU - J.A. Sherratt TI - On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion JO - Mathematical modelling of natural phenomena PY - 2010 SP - 64 EP - 79 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/ DO - 10.1051/mmnp/20105505 LA - en ID - MMNP_2010_5_5_a4 ER -
%0 Journal Article %A J.A. Sherratt %T On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion %J Mathematical modelling of natural phenomena %D 2010 %P 64-79 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/ %R 10.1051/mmnp/20105505 %G en %F MMNP_2010_5_5_a4
J.A. Sherratt. On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 64-79. doi : 10.1051/mmnp/20105505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/
[1] D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynamics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980.
[2] Computational methods and results for structured multiscale models of tumor invasion Multiscale Modeling & Simulation 2006 1 20
, ,[3] Speed of fronts of the reaction-diffusion equation Phys. Rev. Lett. 1996 1171 1173
,[4] Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type Adv. Nonlinear Stud. 2002 357 371
[5] Multi-scale modelling of a wound healing cell migration assay J. Theor. Biol. 2007 576 594
, ,[6] Continuous and discrete models of cooperation in complex bacterial colonies Fractals 1999 235 247
, , , ,[7] Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony Comm. Pure Appl. Anal. 2007 1145 1165
,[8] The wave of advance of advantageous genes Ann. Eugenics 1937 353 369
[9] Dispersal can sharpen parapatric boundaries on a spatially varying environment Ecology 2000 749 760
, ,[10] A reaction-diffusion model of cancer invasion Cancer Res. 1996 4740 4743
,[11] A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions J. Phys. A: Math. Gen. 2005 3367 3379
,[12] The regulation of inhomogeneous population J. Theor. Biol. 1975 441 457
,[13] A note on nonlinear population transport J. Theor. Biol. 1976 249 251
,[14] A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, D. Thomson. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8 (2005), 91-101.
[15] Five potential consequences of climate change for invasive species Conserv. Biol. 2008 534 543
, , ,[16] Interface dynamics of the Fisher equation with degenerate diffusion J. Differential Equations 2008 2870 2889
, , ,[17] E.J. Hinch. Perturbation Methods. Cambridge University Press, 1991.
[18] Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation Rend. Mat. Acc. Lincei 2004 271 280
,[19] Emergence of waves in a nonlinear convection-reaction-diffusion equation Adv. Nonlinear Stud. 2004 251 272
,[20] Modeling spatio-temporal patterns generated by Bacillus subtilis J. Theor. Biol. 1997 177 185
, , , ,[21] J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, 1996.
[22] Simultaneous positive and negative density-dependent dispersal in a colonial bird species Ecology 2009 230 239
, ,[23] Density-dependent dispersal in integrodifference equations J. Math. Biol. 2008 499 524
[24] A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells Tissue Eng. 2004 475 482
, ,[25] Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations Advanced Nonlinear Studies 2005 223 252
,[26] Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations J. Differential Equations 2003 471 496
,[27] Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation Applied Mathematical Modelling 2008 240 247
[28] Density-dependent dispersal in birds and mammals Ecography 2005 403 416
[29] Travelling wave solutions of the degenerate Kolmogorov-Petrovski-Piskunov equation Eur. J. Appl. Math. 2003 343 367
, ,[30] Some exact solutions to a nonlinear diffusion problem in population genetics and combustion J. Theor. Biol. 1980 325 334
[31] A. Okubo, A. Hastings, T. Powell. Population dynamics in temporal and spatial domains. In: A. Okubo, S.A. Levin (eds.) Diffusion and ecological problems: modern perspectives, pp. 298-373. Springer, New York, 2001.
[32] Modelling the movement of interacting cell populations J. Theor. Biol. 2003 327 339
,[33] Finite metapopulation models with density-dependent migration and stochastic local dynamics Proc. R. Soc. Lond. B 1999 113 118
, ,[34] Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations J. Math. Biol. 1994 163 192
,[35] An approximation to a sharp front type solution of a density dependent reaction-diffusion equation Appl. Math. Lett. 1994 47 51
,[36] Travelling wave phenomena in some degenerate reaction-diffusion equations J. Differential Equations 1995 281 319
,[37] A review on travelling wave solutions of one-dimensional reaction diffusion equations with non-linear diffusion term FORMA 1996 45 59
, ,[38] A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations IMA J. Appl. Math. 1996 211 221
, ,[39] Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation Discrete and Continuous Dynamical Systems B 2001 339 362
, , ,[40] Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration J. R. Soc. Interface 2007 1107 1117
, ,[41] Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations Proc. R. Soc. Lond. A 2000 2365 2386
[42] Models of epidermal wound healing Proc. R. Soc. Lond. B 1990 29 36
,[43] Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion Appl. Math. Lett. 1996 33 38
,[44] A new mathematical model for avascular tumour growth J. Math. Biol. 2001 291 312
,[45] Spatial segregation of interacting species J. Math. Biol. 1979 83 99
, ,[46] Coalescence of interacting cell populations J. Theor. Biol. 2007 525 543
, ,[47] Looking inside an invasion wave of cells using continuum models: proliferation is the key J. Theor. Biol. 2006 343 360
, , ,[48] Random dispersal in theoretical populations Biometrika 1951 196 218
[49] The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations J. Theor. Biol. 2008 264 274
, ,[50] Cell migration and proliferation during monolayer formation and wound healing Chem. Eng. Sci. 2009 247 253
, , , , , ,[51] Integrodifference models for persistence in fragmented habitats Bull. Math. Biol. 1997 107 137
,[52] Existence of stationary solutions with transition layers for a class of cross-diffusion systems Proc. R. Soc. Ed. 2002 1493 1511
[53] Effects of patch number and dispersal patterns on population dynamics and synchrony J. Theor. Biol. 2000 377 387
, , ,[54] Justification for wavefront propagation in a tumour growth model with contact inhibition Proc. R. Soc. Lond. A 2008 1257 1273
, ,Cité par Sources :