Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20105505,
author = {J.A. Sherratt},
title = {On the {Form} of {Smooth-Front} {Travelling} {Waves} in a {Reaction-Diffusion} {Equation} with {Degenerate} {Nonlinear} {Diffusion}},
journal = {Mathematical modelling of natural phenomena},
pages = {64--79},
publisher = {mathdoc},
volume = {5},
number = {5},
year = {2010},
doi = {10.1051/mmnp/20105505},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/}
}
TY - JOUR AU - J.A. Sherratt TI - On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion JO - Mathematical modelling of natural phenomena PY - 2010 SP - 64 EP - 79 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/ DO - 10.1051/mmnp/20105505 LA - en ID - 10_1051_mmnp_20105505 ER -
%0 Journal Article %A J.A. Sherratt %T On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion %J Mathematical modelling of natural phenomena %D 2010 %P 64-79 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105505/ %R 10.1051/mmnp/20105505 %G en %F 10_1051_mmnp_20105505
J.A. Sherratt. On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 64-79. doi: 10.1051/mmnp/20105505
[1] D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynamics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980.
[2] , , Computational methods and results for structured multiscale models of tumor invasion Multiscale Modeling & Simulation 2006 1 20
[3] , Speed of fronts of the reaction-diffusion equation Phys. Rev. Lett. 1996 1171 1173
[4] Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type Adv. Nonlinear Stud. 2002 357 371
[5] , , Multi-scale modelling of a wound healing cell migration assay J. Theor. Biol. 2007 576 594
[6] , , , , Continuous and discrete models of cooperation in complex bacterial colonies Fractals 1999 235 247
[7] , Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony Comm. Pure Appl. Anal. 2007 1145 1165
[8] The wave of advance of advantageous genes Ann. Eugenics 1937 353 369
[9] , , Dispersal can sharpen parapatric boundaries on a spatially varying environment Ecology 2000 749 760
[10] , A reaction-diffusion model of cancer invasion Cancer Res. 1996 4740 4743
[11] , A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions J. Phys. A: Math. Gen. 2005 3367 3379
[12] , The regulation of inhomogeneous population J. Theor. Biol. 1975 441 457
[13] , A note on nonlinear population transport J. Theor. Biol. 1976 249 251
[14] A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, D. Thomson. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8 (2005), 91-101.
[15] , , , Five potential consequences of climate change for invasive species Conserv. Biol. 2008 534 543
[16] , , , Interface dynamics of the Fisher equation with degenerate diffusion J. Differential Equations 2008 2870 2889
[17] E.J. Hinch. Perturbation Methods. Cambridge University Press, 1991.
[18] , Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation Rend. Mat. Acc. Lincei 2004 271 280
[19] , Emergence of waves in a nonlinear convection-reaction-diffusion equation Adv. Nonlinear Stud. 2004 251 272
[20] , , , , Modeling spatio-temporal patterns generated by Bacillus subtilis J. Theor. Biol. 1997 177 185
[21] J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, 1996.
[22] , , Simultaneous positive and negative density-dependent dispersal in a colonial bird species Ecology 2009 230 239
[23] Density-dependent dispersal in integrodifference equations J. Math. Biol. 2008 499 524
[24] , , A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells Tissue Eng. 2004 475 482
[25] , Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations Advanced Nonlinear Studies 2005 223 252
[26] , Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations J. Differential Equations 2003 471 496
[27] Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation Applied Mathematical Modelling 2008 240 247
[28] Density-dependent dispersal in birds and mammals Ecography 2005 403 416
[29] , , Travelling wave solutions of the degenerate Kolmogorov-Petrovski-Piskunov equation Eur. J. Appl. Math. 2003 343 367
[30] Some exact solutions to a nonlinear diffusion problem in population genetics and combustion J. Theor. Biol. 1980 325 334
[31] A. Okubo, A. Hastings, T. Powell. Population dynamics in temporal and spatial domains. In: A. Okubo, S.A. Levin (eds.) Diffusion and ecological problems: modern perspectives, pp. 298-373. Springer, New York, 2001.
[32] , Modelling the movement of interacting cell populations J. Theor. Biol. 2003 327 339
[33] , , Finite metapopulation models with density-dependent migration and stochastic local dynamics Proc. R. Soc. Lond. B 1999 113 118
[34] , Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations J. Math. Biol. 1994 163 192
[35] , An approximation to a sharp front type solution of a density dependent reaction-diffusion equation Appl. Math. Lett. 1994 47 51
[36] , Travelling wave phenomena in some degenerate reaction-diffusion equations J. Differential Equations 1995 281 319
[37] , , A review on travelling wave solutions of one-dimensional reaction diffusion equations with non-linear diffusion term FORMA 1996 45 59
[38] , , A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations IMA J. Appl. Math. 1996 211 221
[39] , , , Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation Discrete and Continuous Dynamical Systems B 2001 339 362
[40] , , Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration J. R. Soc. Interface 2007 1107 1117
[41] Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations Proc. R. Soc. Lond. A 2000 2365 2386
[42] , Models of epidermal wound healing Proc. R. Soc. Lond. B 1990 29 36
[43] , Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion Appl. Math. Lett. 1996 33 38
[44] , A new mathematical model for avascular tumour growth J. Math. Biol. 2001 291 312
[45] , , Spatial segregation of interacting species J. Math. Biol. 1979 83 99
[46] , , Coalescence of interacting cell populations J. Theor. Biol. 2007 525 543
[47] , , , Looking inside an invasion wave of cells using continuum models: proliferation is the key J. Theor. Biol. 2006 343 360
[48] Random dispersal in theoretical populations Biometrika 1951 196 218
[49] , , The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations J. Theor. Biol. 2008 264 274
[50] , , , , , , Cell migration and proliferation during monolayer formation and wound healing Chem. Eng. Sci. 2009 247 253
[51] , Integrodifference models for persistence in fragmented habitats Bull. Math. Biol. 1997 107 137
[52] Existence of stationary solutions with transition layers for a class of cross-diffusion systems Proc. R. Soc. Ed. 2002 1493 1511
[53] , , , Effects of patch number and dispersal patterns on population dynamics and synchrony J. Theor. Biol. 2000 377 387
[54] , , Justification for wavefront propagation in a tumour growth model with contact inhibition Proc. R. Soc. Lond. A 2008 1257 1273
Cité par Sources :