Waves of Autocrine Signaling in Patterned Epithelia
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 46-63.

Voir la notice de l'article provenant de la source EDP Sciences

A biophysical model describing long-range cell-to-cell communication by a diffusible signal mediated by autocrine loops in developing epithelia in the presence of a morphogenetic pre-pattern is introduced. Under a number of approximations, the model reduces to a particular kind of bistable reaction-diffusion equation with strong heterogeneity. In the case of the heterogeneity in the form of a long strip a detailed analysis of signal propagation is possible, using a variational approach. It is shown that under a number of assumptions which can be easily verified for particular sets of model parameters, the equation admits a unique (up to translations) variational traveling wave solution. A global bifurcation structure of these solutions is investigated in a number of particular cases. It is demonstrated that the considered setting may provide a robust developmental regulatory mechanism for delivering chemical signals across large distances in developing epithelia.
DOI : 10.1051/mmnp/20105504

C. B. Muratov 1 ; S. Y. Shvartsman 2

1 Department of Mathematical Sciences, New Jersey Institute of Technology Newark, NJ 07102, USA
2 Department of Chemical Engineering and Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, USA
@article{MMNP_2010_5_5_a3,
     author = {C. B. Muratov and S. Y. Shvartsman},
     title = {Waves of {Autocrine} {Signaling} in {Patterned} {Epithelia}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {46--63},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105504/}
}
TY  - JOUR
AU  - C. B. Muratov
AU  - S. Y. Shvartsman
TI  - Waves of Autocrine Signaling in Patterned Epithelia
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 46
EP  - 63
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105504/
DO  - 10.1051/mmnp/20105504
LA  - en
ID  - MMNP_2010_5_5_a3
ER  - 
%0 Journal Article
%A C. B. Muratov
%A S. Y. Shvartsman
%T Waves of Autocrine Signaling in Patterned Epithelia
%J Mathematical modelling of natural phenomena
%D 2010
%P 46-63
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105504/
%R 10.1051/mmnp/20105504
%G en
%F MMNP_2010_5_5_a3
C. B. Muratov; S. Y. Shvartsman. Waves of Autocrine Signaling in Patterned Epithelia. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 46-63. doi : 10.1051/mmnp/20105504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105504/

[1] D. G. Aronson, H. F. Weinberger Multidimensional diffusion arising in population genetics Adv. Math. 1978 33 58

[2] H. L. Ashe, J. Briscoe The interpretation of morphogen gradients Development 2006 385 394

[3] H. Berestycki, F. Hamel. Generalized travelling waves for reaction-diffusion equations. Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101–123. Amer. Math. Soc., Providence, RI, 2007.

[4] J. D. Buckmaster, G. S. S. Ludford. Theory of laminar flames. Cambridge University Press, Cambridge, 1982.

[5] G. Chapuisat Existence and nonexistence of curved front solution of a biological equation J. Differential Equations 2007 237 279

[6] G. Chapuisat and R. Joly, Asymptotic profiles for a travelling front solution of a biological equation. Preprint.

[7] G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser, Boston, 1993.

[8] P. C. Fife.Mathematical Aspects of Reacting and Diffusing Systems. Springer-Verlag, Berlin, 1979.

[9] M. Freeman Feedback control of intercellular signalling in development Nature 2000 313 319

[10] D. Gilbarg, N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983.

[11] U. Heberlin, K. Moses Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive Cell 1995 987 990

[12] B. Kazmierczak, V. Volpert Travelling calcium waves in systems with non-diffusing buffers Math. Models Methods Appl. Sci. 2008 883 912

[13] J. Lembong, N. Yakoby, S. Y. Shvartsman Pattern formation by dynamically interacting network motifs Proc. Natl. Acad. Sci. USA 2009 3213 3218

[14] M. Lucia, C. B. Muratov, M. Novaga Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders Arch. Rational Mech. Anal. 2008 475 508

[15] A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems, volume 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel, 1995.

[16] A. Martinez-Arias, A. Stewart. Molecular principles of animal development. Oxford University Press, New York, 2002.

[17] C. B. Muratov A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type Discrete Cont. Dyn. S., Ser. B 2004 867 892

[18] C. B. Muratov, M. Novaga Front propagation in infinite cylinders. I. A variational approach Comm. Math. Sci. 2008 799 826

[19] C. B. Muratov, F. Posta, S. Y. Shvartsman Autocrine signal transmission with extracellular ligand degradation Phys. Biol. 2009

[20] C. B. Muratov, S. Y. Shvartsman Signal propagation and failure in discrete autocrine relays Phys. Rev. Lett. 2004

[21] M. Přibyl, C. B. Muratov, S. Y. Shvartsman Discrete models of autocrine cell communication in epithelial layers Biophys. J. 2003 3624 3635

[22] M. Přibyl, C. B. Muratov, S. Y. Shvartsman Long-range signal transmission in autocrine relays Biophys. J. 2003 883 896

[23] N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford Univ. Press, Oxford, 1997.

[24] T. Tabata, Y. Takei Morphogens, their identification and regulation Development 2004 703 712

[25] J. J. Tyson, K. Chen, B. Novak Network dynamics and cell physiology Nat. Rev. Mol. Cell Biol. 2001 908 916

[26] A. I. Volpert, V. A. Volpert, V. A. Volpert. Traveling wave solutions of parabolic systems. AMS, Providence, 1994.

[27] V. Volpert, A. Volpert Existence of multidimensional travelling waves in the bistable case C. R. Acad. Sci. Paris Sér. I Math. 1999 245 250

[28] H. S. Wiley, S. Y. Shvartsman, D. A. Lauffenburger Computational modeling of the EGF-receptor system: a paradigm for systems biology Trends Cell Biol. 2003 43 50

[29] L. Wolpert, R. Beddington, T. Jessel, P. Lawrence, E. Meyerowitz. Principles of Development. Oxford University Press, Oxford, 1998.

[30] J. Xin Front propagation in heterogeneous media SIAM Review 2000 161 230

[31] N. Yakoby, J. Lembong, T. Schüpbach, S. Y. Shvartsman Drosophila eggshell is patterned by sequential action of feedforward and feedback loops Development 2008 343 351

Cité par Sources :