Travelling Waves in Near-Degenerate Bistable Competition Models
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 13-35.

Voir la notice de l'article provenant de la source EDP Sciences

We study a class of bistable reaction-diffusion systems used to model two competing species. Systems in this class possess two uniform stable steady states representing semi-trivial solutions. Principally, we are interested in the case where the ratio of the diffusion coefficients is small, i.e. in the near-degenerate case. First, limiting arguments are presented to relate solutions to such systems to those of the degenerate case where one species is assumed not to diffuse. We then consider travelling wave solutions that connect the two stable semi-trivial states of the non-degenerate system. Next, a general energy function for the full system is introduced. Using this and the limiting arguments, we are able to determine the wave direction for small diffusion coefficient ratios. The results obtained only require knowledge of the system kinetics.
DOI : 10.1051/mmnp/20105502

E.O. Alzahrani 1 ; F.A. Davidson 1 ; N. Dodds 1

1 Division of Mathematics, Dundee University, Dundee DD1 4HN, Scotland UK.
@article{MMNP_2010_5_5_a1,
     author = {E.O. Alzahrani and F.A. Davidson and N. Dodds},
     title = {Travelling {Waves} in {Near-Degenerate} {Bistable} {Competition} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {13--35},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/}
}
TY  - JOUR
AU  - E.O. Alzahrani
AU  - F.A. Davidson
AU  - N. Dodds
TI  - Travelling Waves in Near-Degenerate Bistable Competition Models
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 13
EP  - 35
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/
DO  - 10.1051/mmnp/20105502
LA  - en
ID  - MMNP_2010_5_5_a1
ER  - 
%0 Journal Article
%A E.O. Alzahrani
%A F.A. Davidson
%A N. Dodds
%T Travelling Waves in Near-Degenerate Bistable Competition Models
%J Mathematical modelling of natural phenomena
%D 2010
%P 13-35
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/
%R 10.1051/mmnp/20105502
%G en
%F MMNP_2010_5_5_a1
E.O. Alzahrani; F.A. Davidson; N. Dodds. Travelling Waves in Near-Degenerate Bistable Competition Models. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 13-35. doi : 10.1051/mmnp/20105502. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/

[1] R. S. Cantrell, C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley and Sons Ltd, New York, 2003.

[2] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2010.

[3] P. Grindrod. The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves. Clarendon Press, Oxford, 1996.

[4] J.S. Guo, J. Tsai The asymptotic behavior of solutions of the buffered bistable system J. Math. Biol. 2006 179 213

[5] S. Heinze, B. Schweizer Creeping fronts in degenerate reaction-diffusion systems Nonlinearity 2005 2455 2476

[6] S. Heinze, B. Schweizer, H. Schwetlick.Existence of front solutions in degenerate reaction diffusion systems. Preprint 2004-03, SFB 359, University of Heidelberg, 2004.

[7] Y. Hosono Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models In Numerical and Applied Mathematics (Paris1989) IMACS Ann. Comput. Appl. Math. 1989 687 692

[8] Y. Hosono, M. Mimura Singular perturbation approach to traveling waves in competing and diffusing species models J. Math. Kyoto University 1982 435 461

[9] B. Kazmierczak, V. Volpert Travelling waves in partially degenerate reaction-diffusion systems Mathematical Modelling of Natural Phenomena 2007 106 125

[10] B. Kazmierczak, V. Volpert Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion Nonlinearity 2008 71 96

[11] B. Kazmierczak, V. Volpert Mechano-chemical calcium waves in systems with immobile buffers Archives of Mechanics 2008 3 22

[12] D.J. B. Lloyd, B. Sandstede, D. Avitabile, A.R. Champneys Localized hexagon patterns of the planar Swift-Hohenberg equation SIAM J. Appl. Dyn. Syst. 2008 1049 1100

[13] J.D. Murray. Mathematical Biology, II: Spatial Models and Biomedical Applications, volume 2. Springer-Verlag, Berlin, 2003.

[14] A. Okubo, S.A. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer-Verlag, New York, 2001.

[15] J.A. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, Berlin, 1994.

[16] J.C. Tsai, J. Sneyd Existence and stability of traveling waves in buffered systems SIAM J. Applied Math. 2005 237 265

[17] A.I. Volpert, V.A. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems: Translations of Mathematical Monographs, volume 140. American Mathematical Society, Providence, R.I., 1994.

Cité par Sources :