Voir la notice de l'article provenant de la source EDP Sciences
E.O. Alzahrani 1 ; F.A. Davidson 1 ; N. Dodds 1
@article{MMNP_2010_5_5_a1, author = {E.O. Alzahrani and F.A. Davidson and N. Dodds}, title = {Travelling {Waves} in {Near-Degenerate} {Bistable} {Competition} {Models}}, journal = {Mathematical modelling of natural phenomena}, pages = {13--35}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2010}, doi = {10.1051/mmnp/20105502}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/} }
TY - JOUR AU - E.O. Alzahrani AU - F.A. Davidson AU - N. Dodds TI - Travelling Waves in Near-Degenerate Bistable Competition Models JO - Mathematical modelling of natural phenomena PY - 2010 SP - 13 EP - 35 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/ DO - 10.1051/mmnp/20105502 LA - en ID - MMNP_2010_5_5_a1 ER -
%0 Journal Article %A E.O. Alzahrani %A F.A. Davidson %A N. Dodds %T Travelling Waves in Near-Degenerate Bistable Competition Models %J Mathematical modelling of natural phenomena %D 2010 %P 13-35 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/ %R 10.1051/mmnp/20105502 %G en %F MMNP_2010_5_5_a1
E.O. Alzahrani; F.A. Davidson; N. Dodds. Travelling Waves in Near-Degenerate Bistable Competition Models. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 13-35. doi : 10.1051/mmnp/20105502. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105502/
[1] R. S. Cantrell, C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley and Sons Ltd, New York, 2003.
[2] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2010.
[3] P. Grindrod. The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves. Clarendon Press, Oxford, 1996.
[4] The asymptotic behavior of solutions of the buffered bistable system J. Math. Biol. 2006 179 213
,[5] Creeping fronts in degenerate reaction-diffusion systems Nonlinearity 2005 2455 2476
,[6] S. Heinze, B. Schweizer, H. Schwetlick.Existence of front solutions in degenerate reaction diffusion systems. Preprint 2004-03, SFB 359, University of Heidelberg, 2004.
[7] Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models In Numerical and Applied Mathematics (Paris1989) IMACS Ann. Comput. Appl. Math. 1989 687 692
[8] Singular perturbation approach to traveling waves in competing and diffusing species models J. Math. Kyoto University 1982 435 461
,[9] Travelling waves in partially degenerate reaction-diffusion systems Mathematical Modelling of Natural Phenomena 2007 106 125
,[10] Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion Nonlinearity 2008 71 96
,[11] Mechano-chemical calcium waves in systems with immobile buffers Archives of Mechanics 2008 3 22
,[12] Localized hexagon patterns of the planar Swift-Hohenberg equation SIAM J. Appl. Dyn. Syst. 2008 1049 1100
, , ,[13] J.D. Murray. Mathematical Biology, II: Spatial Models and Biomedical Applications, volume 2. Springer-Verlag, Berlin, 2003.
[14] A. Okubo, S.A. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer-Verlag, New York, 2001.
[15] J.A. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, Berlin, 1994.
[16] Existence and stability of traveling waves in buffered systems SIAM J. Applied Math. 2005 237 265
,[17] A.I. Volpert, V.A. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems: Translations of Mathematical Monographs, volume 140. American Mathematical Society, Providence, R.I., 1994.
Cité par Sources :