Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_5_a0, author = {M. Alfaro and D. Hilhorst}, title = {Generation of {Interface} for an {Allen-Cahn} {Equation} with {Nonlinear} {Diffusion}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--12}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2010}, doi = {10.1051/mmnp/20105501}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/} }
TY - JOUR AU - M. Alfaro AU - D. Hilhorst TI - Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion JO - Mathematical modelling of natural phenomena PY - 2010 SP - 1 EP - 12 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/ DO - 10.1051/mmnp/20105501 LA - en ID - MMNP_2010_5_5_a0 ER -
%0 Journal Article %A M. Alfaro %A D. Hilhorst %T Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion %J Mathematical modelling of natural phenomena %D 2010 %P 1-12 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/ %R 10.1051/mmnp/20105501 %G en %F MMNP_2010_5_5_a0
M. Alfaro; D. Hilhorst. Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 1-12. doi : 10.1051/mmnp/20105501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/
[1] The singular limit of a chemotaxis-growth system with general initial data Adv. Differential Equations 2006 1227 1260
[2] The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system J. Differential Equations 2008 505 565
, ,[3] Stabilization of solutions of a degenerate nonlinear diffusion problem Nonlinear Anal. 1982 1001 1022
, ,[4] Population control in arctic ground squirrels Ecology 1971 395 413
[5] Generation and propagation of interfaces for reaction-diffusion equations J. Differential Equations 1992 116 141
[6] Generation and propagation of interfaces for reaction-diffusion systems Trans. Amer. Math. Soc. 1992 877 913
[7] Continuity of weak solutions to a general porous medium equation Indiana University Mathematics J. 1983 83 118
[8] Front propagation for degenerate parabolic equations Nonlinear Anal. 1999 735 746
[9] The regulation of inhomogeneous populations J. Theoret. Biol. 1975 441 457
,[10] On the diffusion of biological populations Math. Biosci. 1979 35 49
,[11] Interface dynamics of the Fisher equation with degenerate diffusion J. Differential Equations 2008 2872 2889
, , ,[12] J. L. Vásquez. The porous medium equation. Mathematical theory. Oxford University Press, Oxford, 2007.
Cité par Sources :