Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 1-12.

Voir la notice de l'article provenant de la source EDP Sciences

In this note, we consider a nonlinear diffusion equation with a bistable reaction term arising in population dynamics. Given a rather general initial data, we investigate its behavior for small times as the reaction coefficient tends to infinity: we prove a generation of interface property.
DOI : 10.1051/mmnp/20105501

M. Alfaro 1 ; D. Hilhorst 2

1 I3M, Université de Montpellier 2, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
2 CNRS et Laboratoire de Mathématiques, Université de Paris-Sud 11, 91405 Orsay Cedex, France.
@article{MMNP_2010_5_5_a0,
     author = {M. Alfaro and D. Hilhorst},
     title = {Generation of {Interface} for an {Allen-Cahn} {Equation} with {Nonlinear} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/}
}
TY  - JOUR
AU  - M. Alfaro
AU  - D. Hilhorst
TI  - Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 1
EP  - 12
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/
DO  - 10.1051/mmnp/20105501
LA  - en
ID  - MMNP_2010_5_5_a0
ER  - 
%0 Journal Article
%A M. Alfaro
%A D. Hilhorst
%T Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion
%J Mathematical modelling of natural phenomena
%D 2010
%P 1-12
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/
%R 10.1051/mmnp/20105501
%G en
%F MMNP_2010_5_5_a0
M. Alfaro; D. Hilhorst. Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 1-12. doi : 10.1051/mmnp/20105501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105501/

[1] M. Alfaro The singular limit of a chemotaxis-growth system with general initial data Adv. Differential Equations 2006 1227 1260

[2] M. Alfaro, D. Hilhorst, H. Matano The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system J. Differential Equations 2008 505 565

[3] D. Aronson, M. G. Crandall, L. A. Peletier Stabilization of solutions of a degenerate nonlinear diffusion problem Nonlinear Anal. 1982 1001 1022

[4] E. A. Carl Population control in arctic ground squirrels Ecology 1971 395 413

[5] X. Chen Generation and propagation of interfaces for reaction-diffusion equations J. Differential Equations 1992 116 141

[6] X. Chen Generation and propagation of interfaces for reaction-diffusion systems Trans. Amer. Math. Soc. 1992 877 913

[7] E. Dibenedetto Continuity of weak solutions to a general porous medium equation Indiana University Mathematics J. 1983 83 118

[8] E. Feireisl Front propagation for degenerate parabolic equations Nonlinear Anal. 1999 735 746

[9] W. S. C. Gurney, R. M. Nisbet The regulation of inhomogeneous populations J. Theoret. Biol. 1975 441 457

[10] M. E. Gurtin, R. C. Maccamy On the diffusion of biological populations Math. Biosci. 1979 35 49

[11] D. Hilhorst, R. Kersner, E. Logak, M. Mimura Interface dynamics of the Fisher equation with degenerate diffusion J. Differential Equations 2008 2872 2889

[12] J. L. Vásquez. The porous medium equation. Mathematical theory. Oxford University Press, Oxford, 2007.

Cité par Sources :