Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a17, author = {V. Vougalter}, title = {On {Threshold} {Eigenvalues} and {Resonances} for the {Linearized} {NLS} {Equation}}, journal = {Mathematical modelling of natural phenomena}, pages = {448--469}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105417}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/} }
TY - JOUR AU - V. Vougalter TI - On Threshold Eigenvalues and Resonances for the Linearized NLS Equation JO - Mathematical modelling of natural phenomena PY - 2010 SP - 448 EP - 469 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/ DO - 10.1051/mmnp/20105417 LA - en ID - MMNP_2010_5_4_a17 ER -
%0 Journal Article %A V. Vougalter %T On Threshold Eigenvalues and Resonances for the Linearized NLS Equation %J Mathematical modelling of natural phenomena %D 2010 %P 448-469 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/ %R 10.1051/mmnp/20105417 %G en %F MMNP_2010_5_4_a17
V. Vougalter. On Threshold Eigenvalues and Resonances for the Linearized NLS Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 448-469. doi : 10.1051/mmnp/20105417. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/
[1] A Positive solution of a nonhomogeneous elliptic equation in RN with G-invariant nonlinearity Comm. PDE. 2002 1 22
[2] Renormalization group analysis of spectral problems in quantum field theory Adv. Math. 1998 205 298
, ,[3] Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 1983 313 345
,[4] Nonlinear scalar field equations. II. Existence of infinitely many solutions Arch. Rational Mech. Anal. 1983 347 375
,[5] An ODE approach to the existence of positive solutions for semilinear problems in ℝN Indiana Univ. Math. J. 1981 141 157
, ,[6] Scattering for the nonlinear Schrödinger equation: states that are close to a soliton St. Petersburg Math. J. 1993 1111 1142
,[7] On asymptotic stability of solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincare Anal. Non Lineaire 2003 419 475
,[8] On asymptotic stability of ground states of NLS Rev. Math. Phys. 2003 877 903
[9] Spectra of linearized operators for NLS solitary waves SIAM J. Math. Anal. 2007 1070 1111
, , ,[10] S. Cuccagna, D. Pelinovsky. Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem. J. Math. Phys., 46 (2005), No. 5, 053520, 15 pp.
[11] Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II J. Anal. Math. 2006 199 248
,[12] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential J. Funct. Anal. 1986 397 408
,[13] Spectra of positive and negative energies in the linearized NLS problem Comm. Pure Appl. Math. 2005 1 29
, ,[14] Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system Comm. Pure Appl. Math. 1990 299 333
[15] S. Gustafson, I.M. Sigal. Mathematical concepts of quantum mechanics. Springer–Verlag, Berlin, 2003.
[16] Asymptotic stability of nonlinear Schrödinger equations with potential Rev. Math. Phys. 2005 1143 1207
,[17] P.D. Hislop, I.M. Sigal. Introduction to spectral theory with applications to Schrödinger operators. Springer, 1996.
[18] Edge bifurcations for near integrable systems via Evans functions techniques SIAM J. Math.Anal. 2002 1117 1143
,[19] Eigenvalues and resonances using the Evans functions Discrete Contin. Dyn. Syst. 2004 857 869
,[20] Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case Ann. Phys. 1980 251 281
,[21] E. Lieb, M. Loss. Analysis. Graduate studies in Mathematics, 14. American Mathematical Society, Providence, 1997.
[22] E.Lieb, B.Simon, A. Wightman. Book “Studies in mathematical physics: Essays in Honor of Valentine Bargmann.” Princeton University Press, 1976.
[23] Uniqueness of positive radial solutions of Δu +f(u) Trans. Amer. Math. Soc. 1993 495 505
[24] Internal modes of envelope solitons Phys. D 1998 121 142
, ,[25] Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations Comm. Partial Differential Equations 2004 1051 1095
[26] Existence of solitary waves in higher dimensions Comm.Math.Phys. 1977 149 162
[27] B.Simon. Functional integration and quantum physics. Pure and Applied Mathematics, 86 (1979), Academic Press.
[28] Stable manifolds for an orbitally unstable nonlinear Schrödinger equation Ann. of Math. (2) 2009 139 227
[29] V. Vougalter. On the negative index theorem for the linearized NLS problem. To appear in Canad. Math. Bull.
[30] V. Vougalter, D. Pelinovsky. Eigenvalues of zero energy in the linearized NLS problem. J. Math. Phys., 47 (2006), No. 6, 062701, 13 pp.
[31] Modulation stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491
Cité par Sources :