On Threshold Eigenvalues and Resonances for the Linearized NLS Equation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 448-469.

Voir la notice de l'article provenant de la source EDP Sciences

We prove the instability of threshold resonances and eigenvalues of the linearized NLS operator. We compute the asymptotic approximations of the eigenvalues appearing from the endpoint singularities in terms of the perturbations applied to the original NLS equation. Our method involves such techniques as the Birman-Schwinger principle and the Feshbach map.
DOI : 10.1051/mmnp/20105417

V. Vougalter 1

1 University of Toronto, Department of Mathematics, Toronto, ON, M5S 2E4, Canada
@article{MMNP_2010_5_4_a17,
     author = {V. Vougalter},
     title = {On {Threshold} {Eigenvalues} and {Resonances} for the {Linearized} {NLS} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {448--469},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/}
}
TY  - JOUR
AU  - V. Vougalter
TI  - On Threshold Eigenvalues and Resonances for the Linearized NLS Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 448
EP  - 469
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/
DO  - 10.1051/mmnp/20105417
LA  - en
ID  - MMNP_2010_5_4_a17
ER  - 
%0 Journal Article
%A V. Vougalter
%T On Threshold Eigenvalues and Resonances for the Linearized NLS Equation
%J Mathematical modelling of natural phenomena
%D 2010
%P 448-469
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/
%R 10.1051/mmnp/20105417
%G en
%F MMNP_2010_5_4_a17
V. Vougalter. On Threshold Eigenvalues and Resonances for the Linearized NLS Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 448-469. doi : 10.1051/mmnp/20105417. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105417/

[1] S. Adachi A Positive solution of a nonhomogeneous elliptic equation in RN with G-invariant nonlinearity Comm. PDE. 2002 1 22

[2] V. Bach, J. Fröhlich, I.M. Sigal Renormalization group analysis of spectral problems in quantum field theory Adv. Math. 1998 205 298

[3] H. Berestycki, P.-L. Lions Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 1983 313 345

[4] H. Berestycki, P.-L. Lions Nonlinear scalar field equations. II. Existence of infinitely many solutions Arch. Rational Mech. Anal. 1983 347 375

[5] H. Berestycki, P.-L. Lions, L. Peletier An ODE approach to the existence of positive solutions for semilinear problems in ℝN Indiana Univ. Math. J. 1981 141 157

[6] V.S. Buslaev, G.S. Perelman Scattering for the nonlinear Schrödinger equation: states that are close to a soliton St. Petersburg Math. J. 1993 1111 1142

[7] V.S. Buslaev, C. Sulem On asymptotic stability of solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincare Anal. Non Lineaire 2003 419 475

[8] S. Cuccagna On asymptotic stability of ground states of NLS Rev. Math. Phys. 2003 877 903

[9] S.-M. Chang, S. Gustafson, K. Nakanishi, T.-P. Tsai Spectra of linearized operators for NLS solitary waves SIAM J. Math. Anal. 2007 1070 1111

[10] S. Cuccagna, D. Pelinovsky. Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem. J. Math. Phys., 46 (2005), No. 5, 053520, 15 pp.

[11] B. Erdogan, W. Schlag Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II J. Anal. Math. 2006 199 248

[12] A. Floer, A. Weinstein Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential J. Funct. Anal. 1986 397 408

[13] S. Cuccagna, D. Pelinovsky, V. Vougalter Spectra of positive and negative energies in the linearized NLS problem Comm. Pure Appl. Math. 2005 1 29

[14] M. Grillakis Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system Comm. Pure Appl. Math. 1990 299 333

[15] S. Gustafson, I.M. Sigal. Mathematical concepts of quantum mechanics. Springer–Verlag, Berlin, 2003.

[16] Z. Gang, I.M. Sigal Asymptotic stability of nonlinear Schrödinger equations with potential Rev. Math. Phys. 2005 1143 1207

[17] P.D. Hislop, I.M. Sigal. Introduction to spectral theory with applications to Schrödinger operators. Springer, 1996.

[18] T. Kapitula, B. Sandstede Edge bifurcations for near integrable systems via Evans functions techniques SIAM J. Math.Anal. 2002 1117 1143

[19] T. Kapitula, B. Sandstede Eigenvalues and resonances using the Evans functions Discrete Contin. Dyn. Syst. 2004 857 869

[20] M. Klaus, B. Simon Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case Ann. Phys. 1980 251 281

[21] E. Lieb, M. Loss. Analysis. Graduate studies in Mathematics, 14. American Mathematical Society, Providence, 1997.

[22] E.Lieb, B.Simon, A. Wightman. Book “Studies in mathematical physics: Essays in Honor of Valentine Bargmann.” Princeton University Press, 1976.

[23] K. Mcleod Uniqueness of positive radial solutions of Δu +f(u) Trans. Amer. Math. Soc. 1993 495 505

[24] D. Pelinovsky, Y. Kivshar, V. Afanasjev Internal modes of envelope solitons Phys. D 1998 121 142

[25] G. Perelman Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations Comm. Partial Differential Equations 2004 1051 1095

[26] W. Strauss Existence of solitary waves in higher dimensions Comm.Math.Phys. 1977 149 162

[27] B.Simon. Functional integration and quantum physics. Pure and Applied Mathematics, 86 (1979), Academic Press.

[28] W. Schlag Stable manifolds for an orbitally unstable nonlinear Schrödinger equation Ann. of Math. (2) 2009 139 227

[29] V. Vougalter. On the negative index theorem for the linearized NLS problem. To appear in Canad. Math. Bull.

[30] V. Vougalter, D. Pelinovsky. Eigenvalues of zero energy in the linearized NLS problem. J. Math. Phys., 47 (2006), No. 6, 062701, 13 pp.

[31] M.I. Weinstein Modulation stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491

Cité par Sources :