Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H1 (ℝd)
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 390-447.

Voir la notice de l'article provenant de la source EDP Sciences

In L2(ℝd; ℂn), we consider a wide class of matrix elliptic second order differential operators $\mathcal{A}$ε with rapidly oscillating coefficients (depending on x/ε). For a fixed τ > 0 and small ε > 0, we find approximation of the operator exponential exp(− $\mathcal{A}$ετ) in the (L2(ℝd; ℂn) → H1(ℝd; ℂn))-operator norm with an error term of order ε. In this approximation, the corrector is taken into account. The results are applied to homogenization of a periodic parabolic Cauchy problem.
DOI : 10.1051/mmnp/20105416

T. Suslina 1

1 Department of Physics, St. Petersburg State University, Ul’yanovskaya 3, Petrodvorets, St. Petersburg, 198504, Russia
@article{MMNP_2010_5_4_a16,
     author = {T. Suslina},
     title = {Homogenization of a {Periodic} {Parabolic} {Cauchy} {Problem} in the {Sobolev} {Space} {H1} {(\ensuremath{\mathbb{R}}d)}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {390--447},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105416/}
}
TY  - JOUR
AU  - T. Suslina
TI  - Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H1 (ℝd)
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 390
EP  - 447
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105416/
DO  - 10.1051/mmnp/20105416
LA  - en
ID  - MMNP_2010_5_4_a16
ER  - 
%0 Journal Article
%A T. Suslina
%T Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H1 (ℝd)
%J Mathematical modelling of natural phenomena
%D 2010
%P 390-447
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105416/
%R 10.1051/mmnp/20105416
%G en
%F MMNP_2010_5_4_a16
T. Suslina. Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H1 (ℝd). Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 390-447. doi : 10.1051/mmnp/20105416. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105416/

[1]

[2] A. Bensoussan, J. L. Lions, G. Papanicolaou. Asymptotic analysis for periodic structures. Stud. Math. Appl., vol. 5, North-Holland Publishing Company, Amsterdam–New York, 1978, 700 pp.

[3] M. Birman, T. Suslina. Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics. Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71–107.

[4] M. Sh. Birman, T. A. Suslina Second order periodic differential operators. Threshold properties and homogenization Algebra i Analiz 2003 1 108

[5] M. Sh. Birman, T. A. Suslina Threshold approximations with corrector term for the resolvent of a factorized selfadjoint operator family Algebra i Analiz 2005 69 90

[6] M. Sh. Birman, T. A. Suslina. Homogenization with corrector term for periodic elliptic differential operators Algebra i Analiz 2005 1 104

[7] M. Sh. Birman, T. A. Suslina Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev classH1(d) Algebra i Analiz 2006 1 130

[8] T. Kato. Perturbation theory for linear operators, 2nd ed. Grundlehren Math. Wiss., vol. 132, Springer-Verlag, Berlin-New York, 1976.

[9] E. Sanchez-Palencia. Nonhomogeneous media and vibration theory. Lecture Notes in Phys., vol. 127, Springer-Verlag, Berlin–New York, 1980.

[10] T. A. Suslina Homogenization of periodic parabolic systems Funktsional. Anal. i Prilozhen. 2004 86 90

[11] T. A. Suslina. Homogenization of periodic parabolic Cauchy problem. Amer. Math. Soc. Transl., ser. 2, 220 (2007), 201–233.

[12] E. S. Vasilevskaya A periodic parabolic Cauchy problem: homogenization with corrector Algebra i Analiz 2009 3 60

[13] V. V. Zhikov On some estimates of homogenization theory Dokl. Ros. Akad. Nauk 2006 597 601

[14]

[15] V. V. Zhikov, S. E. On operator estimates for some problems in homogenization theory Russ. J. Math. Phys. 2005 515 524

[16] V. V. Zhikov, S. E. Pastukhova Estimates of homogenization for a parabolic equation with periodic coefficients Russ. J. Math. Phys. 2006 251 265

Cité par Sources :