Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a15, author = {A. Sakhnovich}, title = {On the {GBDT} {Version} of the {B\"acklund-Darboux} {Transformation} and its {Applications} to {Linear} and {Nonlinear} {Equations} and {Weyl} {Theory}}, journal = {Mathematical modelling of natural phenomena}, pages = {340--389}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105415}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105415/} }
TY - JOUR AU - A. Sakhnovich TI - On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory JO - Mathematical modelling of natural phenomena PY - 2010 SP - 340 EP - 389 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105415/ DO - 10.1051/mmnp/20105415 LA - en ID - MMNP_2010_5_4_a15 ER -
%0 Journal Article %A A. Sakhnovich %T On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory %J Mathematical modelling of natural phenomena %D 2010 %P 340-389 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105415/ %R 10.1051/mmnp/20105415 %G en %F MMNP_2010_5_4_a15
A. Sakhnovich. On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 340-389. doi : 10.1051/mmnp/20105415. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105415/
[1] A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations Phys. Lett. A 2000 132 146
, , ,[2] Resonantly coupled nonlinear evolution equations J. Math. Phys. 1975 2301 2305
,[3] Birkhoff strata, Bäcklund transformations, and regularization of isospectral operators Adv. Math. 1994 140 204
,[4] S. Albeverio, R. Hryniv, Ya. Mykytyuk. Reconstruction of radial Dirac operators.J. Math. Phys. 48 (2007), No. 4, 043501, 14 pp.
[5] Inverse spectral problem for differential operators with rational scattering matrix functions J. Diff. Eqs. 1995 1 19
,[6] Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential Math. Nachr. 2000 5 31
, , ,[7] Zur Theorie der partiellen Differential gleichungen erster Ordnung Math. Ann. 1880 285 328
[8] H. Bart, I. Gohberg, M.A. Kaashoek.Minimal factorization of matrix and operator functions. Operator Theory: Adv. Appl., 1, Birkhäuser Verlag, Basel, 1979.
[9] Scattering and inverse scattering for first-order systems: II Inverse Probl. 1987 577 593
,[10] Inverse problem for an elliptic sine-Gordon equation with an asymptotic behaviour of the cnoidal-wave type Inverse Probl. 1989 959 982
,[11] Generalization of the Darboux transform Matematicheskaya fizika, analiz, geometriya 1994 479 504
,[12] Nonlinear equations in soliton physics and operator ideals Nonlinearity 1999 333 364
,[13] Spectral analysis of Darboux transformations for the focusing NLS hierarchy J. Anal. Math. 2004 139 197
, , ,[14] Bäcklund transformation as a method of decomposition and reproduction of two-dimensional nonlinear systems Phys. Lett. A 1982 325 329
,[15] An effective method to compute N-fold Darboux matrix and N-soliton surfaces J. Math. Phys. 1991 2395 2399
[16] On self-adjoint andJ-self-adjoint Dirac-type operators: a case study Contemporary Mathematics 2006 103 140
,[17] M.J. Corless, A.E. Frazho. Linear Systems and Control - An Operator Perspective. Marcel Dekker, New York, 2003.
[18] Associated Sturm-Liouville systems Quart. J. Math. Oxford Ser. (2) 1955 121 127
[19] G. Darboux. Lecons sur la Theorie Generale de Surface et les Applications Geometriques du Calcul Infinitesimal, II. Gauthiers-Villars, Paris, 1889.
[20] Applications of a commutation formula Duke Math. J. 1978 267 310
[21] L.D. Faddeev, L.A. Takhtajan. Hamiltonian methods in the theory of solitons. Springer Verlag, NY, 1986.
[22] Completion problems and scattering problems for Dirac type differential equations with singularities J. Math. Anal. Appl. 2006 510 525
, ,[23] B. Fritzsche, B. Kirstein, A.L. Sakhnovich. Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system. arXiv:0904.2357
[24] A complete spectral characterization of the double commutation method J. Funct. Anal. 1993 401 446
[25] F. Gesztesy, H. Holden.Soliton equations and their algebro-geometric solutions. Cambridge Studies in Advanced Mathematics, 79, Cambridge University Press, Cambridge, 2003.
[26] Spectral deformations of one-dimensional Schrödinger operators J. Anal. Math. 1996 267 324
, ,[27] On the double commutation method Proc. Am. Math. Soc. 1996 1831 1840
,[28] Canonical systems with rational spectral densities: explicit formulas and applications Mathematische Nachr. 1998 93 125
, ,[29] Pseudocanonical systems with rational Weyl functions: explicit formulas and applications J. Differ. Equations 1998 375 398
, ,[30] Sturm-Liouville systems with rational Weyl functions: explicit formulas and applications IEOT 1998 338 377
, ,[31] I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Canonical systems on the full line with rational spectral densities: explicit formulas. In: Operator Theory: Adv. Appl., 117, M.G. Krein volume (2000), 127–139.
[32] Bound states for canonical systems on the half and full line: explicit formulas IEOT 2001 268 277
, ,[33] Scattering problems for a canonical system with a pseudo-exponential potential Asymptotic Analysis 2002 1 38
, ,[34] C.H. Gu, H. Hu, Z. Zhou. Darboux transformations in integrable systems. Springer Verlag, 2005.
[35] Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen J. Reine Angew. Math. 1846 220 226
[36] Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation Inverse Problems 1990 543 556
,[37] Discrete skew self-adjoint canonical system and the isotropic Heisenberg magnet model J. Funct. Anal. 2005 207 233
,[38] R.E. Kalman, P. Falb, M. Arbib. Topics in mathematical system theory. McGraw-Hill, NY, 1969.
[39] Solitons and almost-intertwining matrices J. Math. Phys. 2001 3540 3551
,[40] Right and left joint system representation of a rational matrix function in general position In: Operator Theory: Adv. Appl. 2001 337 400
[41] B.G. Konopelchenko, C. Rogers. Bäcklund and reciprocal transformations: gauge connections. In: Nonlinear equations in applied sciences (W.F. Ames, C. Rogers, eds.), Academic Press, San Diego, 1992, 317–362.
[42] Quantum Bäcklund transformation for the integrable DST model J. Phys. A 2000 171 189
, ,[43] Dressing method vs. classical Darboux transformation Nuovo Cimento B 1984 34 41
, ,[44] P. Lancaster, L. Rodman,Algebraic Riccati equations. Clarendon Press, Oxford, 1995.
[45] Vectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy J. Nonlinear Sci. 1999 213 232
,[46] V.A. Marchenko. Nonlinear equations and operator algebras. Reidel Publishing Co., Dordrecht, 1988.
[47] Positons: slowly decaying soliton analogs Teoret. Mat. Fiz. 2002 44 61
[48] V.B. Matveev, M.A. Salle.Darboux transformations and solitons. Springer Verlag, Berlin, 1991.
[49] Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter Duke Math. J. 2001 413 449
, ,[50] R. Miura (ed.).Bäcklund Transformations. Lecture Notes in Math., 515, Springer-Verlag, Berlin, 1976.
[51] Integrable Hamiltonian systems and interactions through quadratic constraints Comm. Math. Phys. 1976 207 221
[52] C. Rogers, W.K. Schief.Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
[53] Gauge theory of Bäcklund transformations II Phys. D 1987 225 250
,[54] Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it Ukr. Math. J. 1990 316 323
[55] The Goursat problem for the sine-Gordon equation and the inverse spectral problem Russ. Math. Iz. VUZ 1992 42 52
[56] Exact solutions of nonlinear equations and the method of operator identities Lin. Alg. Appl. 1993 109 126
[57] Dressing procedure for solutions of nonlinear equations and the method of operator identities Inverse Problems 1994 699 710
[58] Iterated Darboux transform (the case of rational dependence on the spectral parameter) Dokl. Natz. Akad. Nauk Ukrain. 1995 24 27
[59] Iterated Bäcklund-Darboux transformation and transfer matrix-function (nonisospectral case) Chaos, Solitons and Fractals 1996 1251 1259
[60] Iterated Bäcklund-Darboux transform for canonical systems J. Functional Anal. 1997 359 370
[61] A.L. Sakhnovich. Inverse spectral problem related to the N-wave equation. In: Operator Theory: Adv. Appl., 117, M.G. Krein volume (2000), 323–338.
[62] Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations JMAA 2001 274 306
[63] Dirac type and canonical systems: spectral and Weyl-Titchmarsh fuctions, direct and inverse problems Inverse Problems 2002 331 348
[64] Dirac type system on the axis: explicit formulas for matrix potentials with singularities and soliton-positon interactions Inverse Problems 2003 845 854
[65] Non-Hermitian matrix Schrödinger equation: Bäcklund-Darboux transformation, Weyl functions, and 𝒫𝒯 symmetry J. Phys. A 2003 7789 7802
[66] Matrix Kadomtsev-Petviashvili equation: matrix identities and explicit non-singular solutions J. Phys. A 2003 5023 5033
[67] Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions Inverse Problems 2005 703 716
[68] Non-self-adjoint Dirac-type systems and related nonlinear equations: wave functions, solutions, and explicit formulas IEOT 2006 127 143
[69] Harmonic maps, Bäcklund-Darboux transformations and "line solution" analogues J. Phys. A: Math. Gen. 2006 15379 15390
[70] Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg-Marchenko theorems Inverse Problems 2006 2083 2101
[71] Bäcklund-Darboux transformation for non-isospectral canonical system and Riemann-Hilbert problem Symmetry Integrability Geom. Methods Appl. 2007
[72] Discrete canonical system and non-Abelian Toda lattice: Bäcklund-Darboux transformation and Weyl functions Math. Nachr. 2007 1 23
[73] Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation Inverse Problems 2008
[74] Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions J. Phys. A: Math. Theor. 2008
[75] Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation Inverse Problems 2008
[76] Bundle bispectrality for matrix differential equations IEOT 2001 472 496
,[77] On the factorization of the transfer matrix function Sov. Math. Dokl. 1976 203 207
[78] L.A. Sakhnovich.Spectral theory of canonical differential systems, method of operator identities. Operator Theory: Adv. Appl., 107, Birkhäuser Verlag, Basel-Boston, 1999.
[79] Explicit solution formulas for the matrix-KP Glasg. Math. J. 2009 147 155
[80] Bäcklund transformations and loop group actions Commun. Pure Appl. Math. 2000 1 75
,[81] Deforming the point spectra of one-dimensional Dirac operators Proc. Amer. Math. Soc. 1998 2873 2881
[82] On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system Physica D 2000 104 116
,[83] The Schur algorithm and its applications Acta Appl.Math. 1985 255 284
,[84] Theory of resonance interaction of wave packages in nonlinear medium JETP 1975 1654 1673
,[85] V.E. Zakharov, A.V. Mikhailov. Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method (Russian). Soviet Phys. JETP, 74 (1978), No. 6, 1953–1973.
[86] On the integrability of classical spinor models in two-dimensional space-time Comm. Math. Phys. 1980 21 40
,[87] On soliton interaction in stable media JETP 1973 1627 1639
,Cité par Sources :