Critical Dimensions for counting Lattice Points in Euclidean Annuli
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 293-316.

Voir la notice de l'article provenant de la source EDP Sciences

We study the number of lattice points in ℝd, d ≥ 2, lying inside an annulus as a function of the centre of the annulus. The average number of lattice points there equals the volume of the annulus, and we study the L1 and L2 norms of the remainder. We say that a dimension is critical, if these norms do not have upper and lower bounds of the same order as the radius goes to infinity. In [Duke Math. J., 107 (2001), No. 2, 209–238], it was proved that in the case of the ball (instead of an annulus) the critical dimensions are d ≡ 1 mod 4. We show that the behaviour of the width of an annulus as a function of the radius determines which dimensions are critical now. In particular, if the width is bounded away from zero and infinity, the critical dimensions are d ≡ 3 mod 4; if the width goes to infinity, but slower than the radius, then all dimensions are critical, and if the width tends to zero as a power of the radius, then there are no critical dimensions.
DOI : 10.1051/mmnp/20105413

L. Parnovski 1 ; N. Sidorova 1

1 Department of Mathematics, University College London, Gower St., London, WC1E 6BT, UK
@article{MMNP_2010_5_4_a13,
     author = {L. Parnovski and N. Sidorova},
     title = {Critical {Dimensions} for counting {Lattice} {Points} in {Euclidean} {Annuli}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {293--316},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105413/}
}
TY  - JOUR
AU  - L. Parnovski
AU  - N. Sidorova
TI  - Critical Dimensions for counting Lattice Points in Euclidean Annuli
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 293
EP  - 316
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105413/
DO  - 10.1051/mmnp/20105413
LA  - en
ID  - MMNP_2010_5_4_a13
ER  - 
%0 Journal Article
%A L. Parnovski
%A N. Sidorova
%T Critical Dimensions for counting Lattice Points in Euclidean Annuli
%J Mathematical modelling of natural phenomena
%D 2010
%P 293-316
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105413/
%R 10.1051/mmnp/20105413
%G en
%F MMNP_2010_5_4_a13
L. Parnovski; N. Sidorova. Critical Dimensions for counting Lattice Points in Euclidean Annuli. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 293-316. doi : 10.1051/mmnp/20105413. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105413/

[1] G. E. Andrews, R. Askey, R. Roy. Special Functions. Cambridge University Press, 1999.

[2] Z. Cheng, J. L. Lebowitz, P. Major On the number of lattice points between two enlarged and randomly shifted copies of an oval Probab. Theory Rel. Fields 1994 253 268

[3] F. Götze Lattice point problems and values of quadratic forms Invent. Math. 2004 195 226

[4] M.N. Huxley Exponential sums and lattice points. III Proc. London Math. Soc. 2003 591 609

[5] D. G. Kendall On the number of lattice points inside a random oval Quart. J. Math., Oxford Ser. 1948 1 26

[6] L. Parnovski, A. V. Sobolev On the Bethe–Sommerfeld conjecture for the polyharmonic operator Duke Math. J. 2001 209 238

[7] L. Parnovski, A. V. Sobolev Lattice points, perturbation theory and the periodic polyharmonic operator Annales H. Poincaré 2001 573 581

[8] M. Skriganov. Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators. Proc. Steklov Math. Inst. Vol., (1984) 171.

[9] A. Walfisz. Gitterpunkte in mehrdimensionalen Kugeln. Warszawa: Panstwowe Wydawnictwo Naukowe, 1957.

Cité par Sources :