Voir la notice de l'article provenant de la source EDP Sciences
Y. Latushkin 1 ; A. Sukhtayev 1
@article{10_1051_mmnp_20105412,
author = {Y. Latushkin and A. Sukhtayev},
title = {The {Algebraic} {Multiplicity} of {Eigenvalues} and the {Evans} {Function} {Revisited}},
journal = {Mathematical modelling of natural phenomena},
pages = {269--292},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2010},
doi = {10.1051/mmnp/20105412},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105412/}
}
TY - JOUR AU - Y. Latushkin AU - A. Sukhtayev TI - The Algebraic Multiplicity of Eigenvalues and the Evans Function Revisited JO - Mathematical modelling of natural phenomena PY - 2010 SP - 269 EP - 292 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105412/ DO - 10.1051/mmnp/20105412 LA - en ID - 10_1051_mmnp_20105412 ER -
%0 Journal Article %A Y. Latushkin %A A. Sukhtayev %T The Algebraic Multiplicity of Eigenvalues and the Evans Function Revisited %J Mathematical modelling of natural phenomena %D 2010 %P 269-292 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105412/ %R 10.1051/mmnp/20105412 %G en %F 10_1051_mmnp_20105412
Y. Latushkin; A. Sukhtayev. The Algebraic Multiplicity of Eigenvalues and the Evans Function Revisited. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 269-292. doi: 10.1051/mmnp/20105412
[1] , , A topological invariant arising in the stability analysis of traveling waves J. reineangew. Math. 1990 167 212
[2] M. S. Birman, M. Z. Solomyak.Spectral theory of self-adjoint operators in Hilbert space. Reidel, Dordrecht, 1987.
[3] C. Chicone, Y. Latushkin.Evolution semigroups in dynamical systems and differential equations. Amer. Math. Soc., Providence, RI, 1999.
[4] , Traveling waves of a perturbed diffusion equation arising in a phase field model Indiana Univ. Math. J. 1989 1197 1222
[5] , , Evans functions, Jost functions, and Fredholm determinants Arch. Rat. Mech. Anal. 2007 361 421
[6] , , , Non-self-adjoint operators, infinite determinants, and some applications Russ. J. Math. Phys. 2005 443 471
[7] , , Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves J. Math. Pures Appl. 2008 160 200
[8] , (Modified ) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited Integral Eq. Operator Theory 2003 457 497
[9] I. Gohberg, S. Goldberg, M. Kaashoek. Classes of linear operators. Vol. 1. Birkhäuser, 1990.
[10] , , Slow damping of internal waves in a stably stratified fluid Proc. Royal Soc. Lond. Ser. A Math. Phys. Engrg. Sci. 2004 977 994
[11] , Normal modes for a stratified viscous fluid layer Proc. Royal Soc. Edinburgh Sect. A 2002 611 625
[12] , Edge bifurcations for near integrable systems via Evans function techniques SIAM J. Math. Anal. 2002 1117 1143
[13] , Eigenvalues and resonances using the Evans function Discrete Contin. Dyn. Syst. 2004 857 869
[14] Wave operators and similarity for some non-selfadjoint operators Math. Ann. 1966 258 279
[15] , Eigenvalues and instabilities of solitary waves Philos. Trans. Royal Soc. London Ser. A 1992 47 94
[16] M. Reed, B. Simon. Methods of modern mathematical physics. I: Functional analysis. Academic Press, New York, 1980.
[17] M. Reed, B. Simon.Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness. Academic Press, New York, 1975.
[18] B. Sandstede. Stability of traveling waves. In: Handbook of dynamical systems. Vol. 2. B. Hasselblatt, A. Katok (eds.). North-Holland, Elsevier, Amsterdam, 2002, pp. 983–1055.
[19] B. Simon. Trace ideals and their applications. Cambridge University Press, Cambridge, 1979.
[20] K. Zumbrun. Multidimensional stability of planar viscous shock waves. In:Advances in the Theory of Shock Waves. T.-P. Liu, H. Freistühler, A. Szepessy (eds.). Progress Nonlin. Diff. Eqs. Appls.,47, Birkhäuser, Boston, 2001, pp. 307–516.
Cité par Sources :