Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a11, author = {H. Kr\"uger}, title = {Semiclassical {Analysis} of the {Largest} {Gap} of {Quasi-Periodic} {Schr\"odinger} {Operators}}, journal = {Mathematical modelling of natural phenomena}, pages = {256--268}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105411}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/} }
TY - JOUR AU - H. Krüger TI - Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators JO - Mathematical modelling of natural phenomena PY - 2010 SP - 256 EP - 268 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/ DO - 10.1051/mmnp/20105411 LA - en ID - MMNP_2010_5_4_a11 ER -
%0 Journal Article %A H. Krüger %T Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators %J Mathematical modelling of natural phenomena %D 2010 %P 256-268 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/ %R 10.1051/mmnp/20105411 %G en %F MMNP_2010_5_4_a11
H. Krüger. Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 256-268. doi : 10.1051/mmnp/20105411. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/
[1] Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts Duke Math. J. 2009 253 280
, ,[2] The Ten Martini Problem Ann. of Math. 2009 303 342
,[3] J. Bourgain. Positive Lyapounov exponents for most energies. Geometric aspects of functional analysis, 37–66, Lecture Notes in Math. No. 1745, Springer, Berlin, 2000.
[4] J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.
[5] Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential Comm. Math. Phys. 1989 91 112
,[6] M. Goldstein, W. Schlag. On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. of Math., (to appear).
[7] Duality and singular continuous spectrum in the almost Mathieu equation Acta Math. 1997 169 183
, , ,[8] Walk inside Hofstadter’s butterfly J. Phys. France 1989 2019 2058
, ,[9] B. Helffer, P. Kerdelhué, J. Sjöstrand. Le papillon de Hofstadter revisité. Mém. Soc. Math. France (N.S.), No. 43 (1990), 87 pp.
[10] Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 1976
[11] Probabilistic averages of Jacobi operators Comm. Math. Phys. 2010 853 875
[12] H. Krüger. In preparation.
[13] G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000.
Cité par Sources :