Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 256-268.

Voir la notice de l'article provenant de la source EDP Sciences

In this note, I wish to describe the first order semiclassical approximation to the spectrum of one frequency quasi-periodic operators. In the case of a sampling function with two critical points, the spectrum exhibits two gaps in the leading order approximation. Furthermore, I will give an example of a two frequency quasi-periodic operator, which has no gaps in the leading order of the semiclassical approximation.
DOI : 10.1051/mmnp/20105411

H. Krüger 1

1 Department of Mathematics, Rice University, Houston, TX 77005, USA
@article{MMNP_2010_5_4_a11,
     author = {H. Kr\"uger},
     title = {Semiclassical {Analysis} of the {Largest} {Gap} of {Quasi-Periodic} {Schr\"odinger} {Operators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {256--268},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/}
}
TY  - JOUR
AU  - H. Krüger
TI  - Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 256
EP  - 268
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/
DO  - 10.1051/mmnp/20105411
LA  - en
ID  - MMNP_2010_5_4_a11
ER  - 
%0 Journal Article
%A H. Krüger
%T Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators
%J Mathematical modelling of natural phenomena
%D 2010
%P 256-268
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/
%R 10.1051/mmnp/20105411
%G en
%F MMNP_2010_5_4_a11
H. Krüger. Semiclassical Analysis of the Largest Gap of Quasi-Periodic Schrödinger Operators. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 256-268. doi : 10.1051/mmnp/20105411. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105411/

[1] A. Avila, J. Bochi, D. Damanik Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts Duke Math. J. 2009 253 280

[2] A. Avila, S. Jitomirskaya The Ten Martini Problem Ann. of Math. 2009 303 342

[3] J. Bourgain. Positive Lyapounov exponents for most energies. Geometric aspects of functional analysis, 37–66, Lecture Notes in Math. No. 1745, Springer, Berlin, 2000.

[4] J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.

[5] V.A. Chulaevsky, Y. G. Sinai Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential Comm. Math. Phys. 1989 91 112

[6] M. Goldstein, W. Schlag. On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. of Math., (to appear).

[7] A. Y. Gordon, S. Jitomirskaya, Y. Last, B. Simon Duality and singular continuous spectrum in the almost Mathieu equation Acta Math. 1997 169 183

[8] J.P. Guillement, B. Helffer, P. Treton Walk inside Hofstadter’s butterfly J. Phys. France 1989 2019 2058

[9] B. Helffer, P. Kerdelhué, J. Sjöstrand. Le papillon de Hofstadter revisité. Mém. Soc. Math. France (N.S.), No. 43 (1990), 87 pp.

[10] D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 1976

[11] H. Krüger Probabilistic averages of Jacobi operators Comm. Math. Phys. 2010 853 875

[12] H. Krüger. In preparation.

[13] G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000.

Cité par Sources :