Regularity and Blow up for Active Scalars
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 225-255.

Voir la notice de l'article provenant de la source EDP Sciences

We review some recent results for a class of fluid mechanics equations called active scalars, with fractional dissipation. Our main examples are the surface quasi-geostrophic equation, the Burgers equation, and the Cordoba-Cordoba-Fontelos model. We discuss nonlocal maximum principle methods which allow to prove existence of global regular solutions for the critical dissipation. We also recall what is known about the possibility of finite time blow up in the supercritical regime.
DOI : 10.1051/mmnp/20105410

A. Kiselev 1

1 Department of Mathematics, University of Wisconsin-Madison, USA
@article{MMNP_2010_5_4_a10,
     author = {A. Kiselev},
     title = {Regularity and {Blow} up for {Active} {Scalars}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {225--255},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/}
}
TY  - JOUR
AU  - A. Kiselev
TI  - Regularity and Blow up for Active Scalars
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 225
EP  - 255
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/
DO  - 10.1051/mmnp/20105410
LA  - en
ID  - MMNP_2010_5_4_a10
ER  - 
%0 Journal Article
%A A. Kiselev
%T Regularity and Blow up for Active Scalars
%J Mathematical modelling of natural phenomena
%D 2010
%P 225-255
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/
%R 10.1051/mmnp/20105410
%G en
%F MMNP_2010_5_4_a10
A. Kiselev. Regularity and Blow up for Active Scalars. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 225-255. doi : 10.1051/mmnp/20105410. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/

[1] G.R. Baker, X. Li, A.C. Morlet Analytic structure of 1D-transport equations with nonlocal fluxes Physica D 1996 349 375

[2] A. Bertozzi and A. Majda. Vorticity and Incompressible Flow. Cambridge University Press, 2002.

[3] K. Bogdan, A. Stoś, P. Sztonyk Harnack inequality for stable processes on d-sets Studia Math. 2003 163 198

[4] L. Caffarelli and A. Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Preprint arXiv:math / 0608447.

[5] J. Carrillo, L. Ferreira The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations Nonlinearity 2008 1001 1018

[6] D. Chae, J. Lee Global well-posedness in the super-critical dissipative quasi-geostrophic equations Comm. Math. Phys. 2003 297 311

[7] Q. Chen, C. Miao, Z. Zhang A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation Comm. Math. Phys. 2007 821 838

[8] P. Constantin Active scalars and the Euler equation Tatra Mountains Math. Publ. 1994 25 38

[9] P. Constantin Energy spectrum of quasigeostrophic turbulence Phys. Rev. Lett. 2002

[10] P. Constantin, D. Cordoba, J. Wu On the critical dissipative quasi-geostrophic equation Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J. 2001 97 107

[11] P. Constantin, A. Majda, E. Tabak Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar Nonlinearity 1994 1495 1533

[12] P. Constantin, G. Iyer, J. Wu Global regularity for a modified critical dissipative quasi-geostrophic equation Indiana Univ. Math. J. 2008 2681 2692

[13] P. Constantin, J. Wu Behavior of solutions of 2D quasi-geostrophic equations SIAM J. Math. Anal. 1999 937 948

[14] P. Constantin and J. Wu. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Preprint, arXiv:math / 0701592.

[15] P. Constantin and J. Wu. Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Preprint, arXiv:math / 0701594.

[16] D. Cordoba Nonexistence of simple hyperbolic blow up for the quasi-geostrophic equation Ann. of Math. 1998 1135 1152

[17] A. Cordoba, D. Cordoba A maximum principle applied to quasi-geostrophic equations Commun. Math. Phys. 2004 511 528

[18] A. Cordoba, D. Cordoba, M. Fontelos Formation of singularities for a transport equation with nonlocal velocity Ann. of Math. 2005 1377 1389

[19] S. Denisov Infinite superlinear growth of the gradient for the two-dimensional Euler equation Discrete Contin. Dyn. Syst. 2009 755 764

[20] H. Dong. Higher regularity for the critical and super-critical dissipative quasi-geostrophic equations. Preprint arXiv:math / 0701826.

[21] H. Dong and D. Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Preprint arXiv:math / 0701828.

[22] H. Dong and N. Pavlovic. A regularity criterion for the dissipative quasi-geostrophic equations. Preprint arXiv:math / 07105201.

[23] H. Dong, D. Du, D. Li Finite time singularities and global well-posedness for fractal Burgers equations Indiana Univ. Math. J. 2009 807 821

[24] I. Held, R. Pierrehumbert, S. Garner, K. Swanson Surface quasi-geostrophic dynamics J. Fluid Mech. 1995 1 20

[25] S. Friedlander, N. Pavlovic and V. Vicol. Nonlinear instability for critically dissipative quasi-geostrophic equation. Preprint.

[26] N. Ju The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations Comm. Math. Phys. 2005 161 181

[27] N. Ju Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation Math. Ann. 2006 627 642

[28] N. Ju Geometric constrains for global regularity of 2D quasi-geostrophic flows J. Differential Equations 2006 54 79

[29] N. Ju Dissipative 2D quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions Indiana Univ. Math. J. 2007 187 206

[30] W. Feller. Introduction to Probability Theory and Applications. Vol. 2, Wiley, 1971.

[31] A. Kiselev, F. Nazarov, R. Shterenberg On blow up and regularity in dissipative Burgers equation Dynamics of PDE 2008 211 240

[32] A. Kiselev, F. Nazarov, A. Volberg Global well-posedness for the critical 2D dissipative quasi-geostrophic equation Inventiones Math. 2007 445 453

[33] A. Kiselev and F. Nazarov. A variation on a theme of Caffarelli and Vasseur. to appear at Zapiski Nauchn. Sem. POMI.

[34] A. Kiselev and F. Nazarov. Nonlocal maximum principles for active scalars, title tentative, in preparation.

[35] D. Li, J. Rodrigo Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Adv. Math. 2008 2563 2568

[36] C. Marchioro and M. Pulvirenti. Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, New York 1994.

[37] C. Miao and L. Xue. Global wellposedness for a modified critical dissipative quasi-geostrophic equation, arXiv:math / 0901.1368 (2009).

[38] H. Miura Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space Comm. Math. Phys. 2006 141 157

[39] A.C. Morlet Further properties of a continuum of model equations ith globally defined flux J. Math. Anal. Appl. 1998 132 160

[40] N. S. Nadirashvili Wandering solutions of the two-dimensional Euler equation (Russian) Funkcional. Anal. i Prilozh. 1991 70 71

[41] S. Resnick. Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago, 1995.

[42] L. Smith and J. Sukhatme. Eddies and waves in a family of dispersive dynamically active scalars. Preprint arXiv:0709.2897.

[43] L. Sylvestre. Eventual regularization for the slightly supercritical quasi-geostrophic equation. Preprint arXiv:math / 0812.4901.

[44] M. Taylor. Partial Differential Equations III: Nonlinear Equations. Springer-Verlag, New York, 1997.

[45] J. Wu The quasi-geostrophic equation and its two regularizations Comm. Partial Differential Equations 2002 1161 1181

[46] J. Wu Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation Nonlinear Anal. 2007 3013 3036

[47] J. Wu Solutions of the 2D quasi-geostrophic equation in Hölder spaces Nonlinear Anal. 2005 579 594

[48] J. Wu The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation Nonlinearity 2005 139 154

[49] V.I. Yudovich The loss of smoothness of the solutions of Euler equations with time (Russian) Dinamika Sploshn. Sredy Vyp. 16, Nestacionarnye Problemy Gidrodinamiki 1974 71 78

[50] V.I. Yudovich On the loss of smothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid Chaos 2000 705 719

Cité par Sources :