Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a10, author = {A. Kiselev}, title = {Regularity and {Blow} up for {Active} {Scalars}}, journal = {Mathematical modelling of natural phenomena}, pages = {225--255}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105410}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/} }
TY - JOUR AU - A. Kiselev TI - Regularity and Blow up for Active Scalars JO - Mathematical modelling of natural phenomena PY - 2010 SP - 225 EP - 255 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/ DO - 10.1051/mmnp/20105410 LA - en ID - MMNP_2010_5_4_a10 ER -
A. Kiselev. Regularity and Blow up for Active Scalars. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 225-255. doi : 10.1051/mmnp/20105410. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105410/
[1] Analytic structure of 1D-transport equations with nonlocal fluxes Physica D 1996 349 375
, ,[2] A. Bertozzi and A. Majda. Vorticity and Incompressible Flow. Cambridge University Press, 2002.
[3] Harnack inequality for stable processes on d-sets Studia Math. 2003 163 198
, ,[4] L. Caffarelli and A. Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Preprint arXiv:math / 0608447.
[5] The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations Nonlinearity 2008 1001 1018
,[6] Global well-posedness in the super-critical dissipative quasi-geostrophic equations Comm. Math. Phys. 2003 297 311
,[7] A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation Comm. Math. Phys. 2007 821 838
, ,[8] Active scalars and the Euler equation Tatra Mountains Math. Publ. 1994 25 38
[9] Energy spectrum of quasigeostrophic turbulence Phys. Rev. Lett. 2002
[10] On the critical dissipative quasi-geostrophic equation Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J. 2001 97 107
, ,[11] Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar Nonlinearity 1994 1495 1533
, ,[12] Global regularity for a modified critical dissipative quasi-geostrophic equation Indiana Univ. Math. J. 2008 2681 2692
, ,[13] Behavior of solutions of 2D quasi-geostrophic equations SIAM J. Math. Anal. 1999 937 948
,[14] P. Constantin and J. Wu. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Preprint, arXiv:math / 0701592.
[15] P. Constantin and J. Wu. Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Preprint, arXiv:math / 0701594.
[16] Nonexistence of simple hyperbolic blow up for the quasi-geostrophic equation Ann. of Math. 1998 1135 1152
[17] A maximum principle applied to quasi-geostrophic equations Commun. Math. Phys. 2004 511 528
,[18] Formation of singularities for a transport equation with nonlocal velocity Ann. of Math. 2005 1377 1389
, ,[19] Infinite superlinear growth of the gradient for the two-dimensional Euler equation Discrete Contin. Dyn. Syst. 2009 755 764
[20] H. Dong. Higher regularity for the critical and super-critical dissipative quasi-geostrophic equations. Preprint arXiv:math / 0701826.
[21] H. Dong and D. Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Preprint arXiv:math / 0701828.
[22] H. Dong and N. Pavlovic. A regularity criterion for the dissipative quasi-geostrophic equations. Preprint arXiv:math / 07105201.
[23] Finite time singularities and global well-posedness for fractal Burgers equations Indiana Univ. Math. J. 2009 807 821
, ,[24] Surface quasi-geostrophic dynamics J. Fluid Mech. 1995 1 20
, , ,[25] S. Friedlander, N. Pavlovic and V. Vicol. Nonlinear instability for critically dissipative quasi-geostrophic equation. Preprint.
[26] The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations Comm. Math. Phys. 2005 161 181
[27] Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation Math. Ann. 2006 627 642
[28] Geometric constrains for global regularity of 2D quasi-geostrophic flows J. Differential Equations 2006 54 79
[29] Dissipative 2D quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions Indiana Univ. Math. J. 2007 187 206
[30] W. Feller. Introduction to Probability Theory and Applications. Vol. 2, Wiley, 1971.
[31] On blow up and regularity in dissipative Burgers equation Dynamics of PDE 2008 211 240
, ,[32] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation Inventiones Math. 2007 445 453
, ,[33] A. Kiselev and F. Nazarov. A variation on a theme of Caffarelli and Vasseur. to appear at Zapiski Nauchn. Sem. POMI.
[34] A. Kiselev and F. Nazarov. Nonlocal maximum principles for active scalars, title tentative, in preparation.
[35] Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Adv. Math. 2008 2563 2568
,[36] C. Marchioro and M. Pulvirenti. Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, New York 1994.
[37] C. Miao and L. Xue. Global wellposedness for a modified critical dissipative quasi-geostrophic equation, arXiv:math / 0901.1368 (2009).
[38] Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space Comm. Math. Phys. 2006 141 157
[39] Further properties of a continuum of model equations ith globally defined flux J. Math. Anal. Appl. 1998 132 160
[40] Wandering solutions of the two-dimensional Euler equation (Russian) Funkcional. Anal. i Prilozh. 1991 70 71
[41] S. Resnick. Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago, 1995.
[42] L. Smith and J. Sukhatme. Eddies and waves in a family of dispersive dynamically active scalars. Preprint arXiv:0709.2897.
[43] L. Sylvestre. Eventual regularization for the slightly supercritical quasi-geostrophic equation. Preprint arXiv:math / 0812.4901.
[44] M. Taylor. Partial Differential Equations III: Nonlinear Equations. Springer-Verlag, New York, 1997.
[45] The quasi-geostrophic equation and its two regularizations Comm. Partial Differential Equations 2002 1161 1181
[46] Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation Nonlinear Anal. 2007 3013 3036
[47] Solutions of the 2D quasi-geostrophic equation in Hölder spaces Nonlinear Anal. 2005 579 594
[48] The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation Nonlinearity 2005 139 154
[49] The loss of smoothness of the solutions of Euler equations with time (Russian) Dinamika Sploshn. Sredy Vyp. 16, Nestacionarnye Problemy Gidrodinamiki 1974 71 78
[50] On the loss of smothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid Chaos 2000 705 719
Cité par Sources :