Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a9, author = {M. Keller and D. Lenz}, title = {Unbounded {Laplacians} on {Graphs:} {Basic} {Spectral} {Properties} and the {Heat} {Equation}}, journal = {Mathematical modelling of natural phenomena}, pages = {198--224}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105409}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/} }
TY - JOUR AU - M. Keller AU - D. Lenz TI - Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation JO - Mathematical modelling of natural phenomena PY - 2010 SP - 198 EP - 224 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/ DO - 10.1051/mmnp/20105409 LA - en ID - MMNP_2010_5_4_a9 ER -
%0 Journal Article %A M. Keller %A D. Lenz %T Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation %J Mathematical modelling of natural phenomena %D 2010 %P 198-224 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/ %R 10.1051/mmnp/20105409 %G en %F MMNP_2010_5_4_a9
M. Keller; D. Lenz. Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 198-224. doi : 10.1051/mmnp/20105409. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/
[1] Espaces de Dirichlet. I. Le cas élémentaire Acta Math. 1958 203 224
,[2] Dirichlet spaces Proc. Nat. Acad. Sci. U.S.A. 1959 208 215
,[3] N. Bouleau, F. Hirsch. Dirichlet forms and analysis on Wiener space. Volume 14 ofde Gruyter Studies in Mathematics, Walter de Gruyter Co., Berlin, 1991.
[4] F. R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997.
[5] Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs Comm. Anal. Geom. 2000 969 1026
, ,[6] Y. Colin de Verdière. Spectres de graphes. Soc. Math. France, Paris, 1998.
[7] E. B. Davies. Heat kernels and spectral theory. Cambridge University press, Cambridge, 1989.
[8] E. B. Davies. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007.
[9] Difference Equations, isoperimetric inequality and transience of certain random walks Trans. Amer. Math. Soc. 1984 787 794
[10] J. Dodziuk. Elliptic operators on infinite graphs. Analysis, geometry and topology of elliptic operators, 353–368, World Sci. Publ., Hackensack, NJ, 2006.
[11] J. Dodziuk, W. S. Kendall. Combinatorial Laplacians and isoperimetric inequality. From local times to global geometry, control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986.
[12] J. Dodziuk, V. Matthai. Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. The ubiquitous heat kernel, 69–81, Contemp. Math., 398, Amer. Math. Soc., Providence, RI, 2006.
[13] On boundaries and lateral conditions for the Kolmogorov differential equations Ann. of Math. 1957 527 570
[14] Laplacians on rapidly branching trees Duke Math Jour. 1996 191 202
[15] M. Fukushima, Y. Oshima, M.Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter Co., Berlin, 1994.
[16] Analytic and geometric background of reccurrence and non-explosion of the brownian motion on riemannian manifolds Bull. Am. Math. Soc. 1999 135 249
[17] S. Haeseler, M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, preprint 2010, arXiv:1002.1040.
[18] Explicit isoperimetric constants and phase transitions in the random-cluster model Ann. Probab. 2002 443 473
, ,[19] Isoperimetric constants of (d,f)-regular planar graphs Interdiscip. Inform. Sci. 2003 221 228
,[20] Essential selfadjointness of the graph-Laplacian J. Math. Phys. 2008
[21] The essential spectrum of Laplacians on rapidly branching tesselations Math. Ann. 2010 51 66
[22] M. Keller, D. Lenz. Dirichlet forms and stochastic completeness of graphs and subgraphs. preprint 2009, arXiv:0904.2985.
[23] M. Keller, N. Peyerimhoff. Cheeger constants, growth and spectrum of locally tessellating planar graphs. to appear in Math. Z., arXiv:0903.4793.
[24] Light structures in infinite planar graphs without the strong isoperimetric property Trans. Amer. Math. Soc. 2002 3059 3074
[25] Z.-M. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin, 1992.
[26] Heat kernel estimates on weighted graphs Bull. London Math. Soc. 2000 477 483
,[27] Denumerable Markov processes and the associated contraction semigroups onl Acta Math. 1957 1 46
[28] textitAnalysis on local Dirichlet spaces. I: Recurrence, conservativeness and Lp-Liouville properties J. Reine Angew. Math. 1994 173 196
[29] A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains Math. Z. 1995 275 287
[30] Perturbation of Dirichlet forms by measures Potential Anal. 1996 109 138
,[31] The spectrum of an infinite graph Can. J. Math. 2000 1057 1084
[32] A. Weber. Analysis of the physical Laplacian and the heat flow on a locally finite graph. Preprint 2008, arXiv:0801.0812.
[33] R. K. Wojciechowski. Stochastic completeness of graphs, PhD thesis, 2007. arXiv:0712.1570v2.
[34] Heat kernel and essential spectrum of infinite graphs Indiana Univ. Math. J. 2009 1419 1441
[35] R. K. Wojciechowski. Stochastically Incomplete Manifolds and Graphs. Preprint 2009, arXiv:0910.5636.
Cité par Sources :