Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 198-224.

Voir la notice de l'article provenant de la source EDP Sciences

We discuss Laplacians on graphs in a framework of regular Dirichlet forms. We focus on phenomena related to unboundedness of the Laplacians. This includes (failure of) essential selfadjointness, absence of essential spectrum and stochastic incompleteness.
DOI : 10.1051/mmnp/20105409

M. Keller 1 ; D. Lenz 1

1 Mathematisches Institut, Friedrich Schiller Universität Jena D-07743 Jena, Germany
@article{MMNP_2010_5_4_a9,
     author = {M. Keller and D. Lenz},
     title = {Unbounded {Laplacians} on {Graphs:} {Basic} {Spectral} {Properties} and the {Heat} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {198--224},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105409},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/}
}
TY  - JOUR
AU  - M. Keller
AU  - D. Lenz
TI  - Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 198
EP  - 224
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/
DO  - 10.1051/mmnp/20105409
LA  - en
ID  - MMNP_2010_5_4_a9
ER  - 
%0 Journal Article
%A M. Keller
%A D. Lenz
%T Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation
%J Mathematical modelling of natural phenomena
%D 2010
%P 198-224
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/
%R 10.1051/mmnp/20105409
%G en
%F MMNP_2010_5_4_a9
M. Keller; D. Lenz. Unbounded Laplacians on Graphs: Basic Spectral Properties and the Heat Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 198-224. doi : 10.1051/mmnp/20105409. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105409/

[1] A. Beurling, J. Deny Espaces de Dirichlet. I. Le cas élémentaire Acta Math. 1958 203 224

[2] A. Beurling, J. Deny Dirichlet spaces Proc. Nat. Acad. Sci. U.S.A. 1959 208 215

[3] N. Bouleau, F. Hirsch. Dirichlet forms and analysis on Wiener space. Volume 14 ofde Gruyter Studies in Mathematics, Walter de Gruyter Co., Berlin, 1991.

[4] F. R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997.

[5] F. R. K. Chung, A. Grigoryan, S.-T. Yau Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs Comm. Anal. Geom. 2000 969 1026

[6] Y. Colin de Verdière. Spectres de graphes. Soc. Math. France, Paris, 1998.

[7] E. B. Davies. Heat kernels and spectral theory. Cambridge University press, Cambridge, 1989.

[8] E. B. Davies. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007.

[9] J. Dodziuk Difference Equations, isoperimetric inequality and transience of certain random walks Trans. Amer. Math. Soc. 1984 787 794

[10] J. Dodziuk. Elliptic operators on infinite graphs. Analysis, geometry and topology of elliptic operators, 353–368, World Sci. Publ., Hackensack, NJ, 2006.

[11] J. Dodziuk, W. S. Kendall. Combinatorial Laplacians and isoperimetric inequality. From local times to global geometry, control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986.

[12] J. Dodziuk, V. Matthai. Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. The ubiquitous heat kernel, 69–81, Contemp. Math., 398, Amer. Math. Soc., Providence, RI, 2006.

[13] W. Feller On boundaries and lateral conditions for the Kolmogorov differential equations Ann. of Math. 1957 527 570

[14] K. Fujiwara Laplacians on rapidly branching trees Duke Math Jour. 1996 191 202

[15] M. Fukushima, Y. Oshima, M.Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter Co., Berlin, 1994.

[16] A. Grigor’Yan Analytic and geometric background of reccurrence and non-explosion of the brownian motion on riemannian manifolds Bull. Am. Math. Soc. 1999 135 249

[17] S. Haeseler, M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, preprint 2010, arXiv:1002.1040.

[18] O. Häggström, J. Jonasson, R. Lyons Explicit isoperimetric constants and phase transitions in the random-cluster model Ann. Probab. 2002 443 473

[19] Y. Higuchi, T. Shirai Isoperimetric constants of (d,f)-regular planar graphs Interdiscip. Inform. Sci. 2003 221 228

[20] P. E. T. Jorgensen Essential selfadjointness of the graph-Laplacian J. Math. Phys. 2008

[21] M. Keller The essential spectrum of Laplacians on rapidly branching tesselations Math. Ann. 2010 51 66

[22] M. Keller, D. Lenz. Dirichlet forms and stochastic completeness of graphs and subgraphs. preprint 2009, arXiv:0904.2985.

[23] M. Keller, N. Peyerimhoff. Cheeger constants, growth and spectrum of locally tessellating planar graphs. to appear in Math. Z., arXiv:0903.4793.

[24] B. Mohar Light structures in infinite planar graphs without the strong isoperimetric property Trans. Amer. Math. Soc. 2002 3059 3074

[25] Z.-M. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin, 1992.

[26] B. Metzger, P. Stollmann Heat kernel estimates on weighted graphs Bull. London Math. Soc. 2000 477 483

[27] G. E. H. Reuter Denumerable Markov processes and the associated contraction semigroups onl Acta Math. 1957 1 46

[28] K.-T. Sturm textitAnalysis on local Dirichlet spaces. I: Recurrence, conservativeness and Lp-Liouville properties J. Reine Angew. Math. 1994 173 196

[29] P. Stollmann A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains Math. Z. 1995 275 287

[30] P. Stollmann, J. Voigt Perturbation of Dirichlet forms by measures Potential Anal. 1996 109 138

[31] H. Urakawa The spectrum of an infinite graph Can. J. Math. 2000 1057 1084

[32] A. Weber. Analysis of the physical Laplacian and the heat flow on a locally finite graph. Preprint 2008, arXiv:0801.0812.

[33] R. K. Wojciechowski. Stochastic completeness of graphs, PhD thesis, 2007. arXiv:0712.1570v2.

[34] R. K. Wojciechowski Heat kernel and essential spectrum of infinite graphs Indiana Univ. Math. J. 2009 1419 1441

[35] R. K. Wojciechowski. Stochastically Incomplete Manifolds and Graphs. Preprint 2009, arXiv:0910.5636.

Cité par Sources :