An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 158-174.

Voir la notice de l'article provenant de la source EDP Sciences

We classify the hulls of different limit-periodic potentials and show that the hull of a limit-periodic potential is a procyclic group. We describe how limit-periodic potentials can be generated from a procyclic group and answer arising questions. As an expository paper, we discuss the connection between limit-periodic potentials and profinite groups as completely as possible and review some recent results on Schrödinger operators obtained in this context.
DOI : 10.1051/mmnp/20105407

Z. Gan 1

1 Department of Mathematics, Rice University, 77005 Houston, USA
@article{MMNP_2010_5_4_a7,
     author = {Z. Gan},
     title = {An {Exposition} of the {Connection} between {Limit-Periodic} {Potentials} and {Profinite} {Groups}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {158--174},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/}
}
TY  - JOUR
AU  - Z. Gan
TI  - An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 158
EP  - 174
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/
DO  - 10.1051/mmnp/20105407
LA  - en
ID  - MMNP_2010_5_4_a7
ER  - 
%0 Journal Article
%A Z. Gan
%T An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups
%J Mathematical modelling of natural phenomena
%D 2010
%P 158-174
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/
%R 10.1051/mmnp/20105407
%G en
%F MMNP_2010_5_4_a7
Z. Gan. An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 158-174. doi : 10.1051/mmnp/20105407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/

[1] A. Avila On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators Commun. Math. Phys. 2009 907 918

[2] J. Avron, B. Simon Almost periodic Schrödinger operators. I. Limit periodic potentials Commun. Math. Phys. 1981 101 120

[3] W. Craig, B. Simon Subharmonicity of the Lyaponov index Duke Math. J. 1983 551 560

[4] D. Damanik, Z. Gan. Spectral properties of limit-periodic Schrödinger operators. To appear in to appear in Discrete Contin. Dyn. Syst. Ser. S.

[5] D. Damanik, Z. Gan Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents J. Funct. Anal. 2010 4010 4025

[6] D. Damanik, Z. Gan. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. Preprint, (arXiv:1003.1695).

[7] D. Damanik, A. Gorodetski The spectrum of the weakly coupled Fibonacci Hamiltonian Electron. Res. Announc. Math. Sci. 2009 23 29

[8] A. Figotin, L. Pastur An exactly solvable model of a multidimensional incommensurate structure Commun. Math. Phys. 1984 401 425

[9] S. Fishman, D. Grempel, R. Prange Localization in a d-dimensional incommensurate structure Phys. Rev. B 1984 4272 4276

[10] Z. Gan, H. Krüger. Optimality of log Hölder continuity of the integrated density of states. To appear in Math. Nachr.

[11] S. Jitomirskaya Continuous spectrum and uniform localization for ergodic Schrödinger operators J. Funct. Anal. 1997 312 322

[12] S. Jitomirskaya, B. Simon Operators with singular continuous spectrum, III. Alomost periodic Schrödinger operators Commun. Math. Phys. 1994 201 205

[13] J. Pöschel Examples of discrete Schrödinger operators with pure point spectrum Commun. Math. Phys. 1983 447 463

[14] R. Prange, D. Grempel, S. Fishman A solvable model of quantum motion in an incommensurate potential Phys. Rev. B 1984 6500 6512

[15] L. Ribes, P. Zalesskii. Profinite Groups. Springer-Verlag, Berlin, 2000.

[16] B. Simon Equilibrium measures and capacities in spectral theory Inverse Probl. Imaging 2007 713 772

[17] J. Wilson. Profinite Groups. Oxford University Press, New York, 1998.

Cité par Sources :