Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a7, author = {Z. Gan}, title = {An {Exposition} of the {Connection} between {Limit-Periodic} {Potentials} and {Profinite} {Groups}}, journal = {Mathematical modelling of natural phenomena}, pages = {158--174}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105407}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/} }
TY - JOUR AU - Z. Gan TI - An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups JO - Mathematical modelling of natural phenomena PY - 2010 SP - 158 EP - 174 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/ DO - 10.1051/mmnp/20105407 LA - en ID - MMNP_2010_5_4_a7 ER -
%0 Journal Article %A Z. Gan %T An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups %J Mathematical modelling of natural phenomena %D 2010 %P 158-174 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/ %R 10.1051/mmnp/20105407 %G en %F MMNP_2010_5_4_a7
Z. Gan. An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 158-174. doi : 10.1051/mmnp/20105407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105407/
[1] On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators Commun. Math. Phys. 2009 907 918
[2] Almost periodic Schrödinger operators. I. Limit periodic potentials Commun. Math. Phys. 1981 101 120
,[3] Subharmonicity of the Lyaponov index Duke Math. J. 1983 551 560
,[4] D. Damanik, Z. Gan. Spectral properties of limit-periodic Schrödinger operators. To appear in to appear in Discrete Contin. Dyn. Syst. Ser. S.
[5] Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents J. Funct. Anal. 2010 4010 4025
,[6] D. Damanik, Z. Gan. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. Preprint, (arXiv:1003.1695).
[7] The spectrum of the weakly coupled Fibonacci Hamiltonian Electron. Res. Announc. Math. Sci. 2009 23 29
,[8] An exactly solvable model of a multidimensional incommensurate structure Commun. Math. Phys. 1984 401 425
,[9] Localization in a d-dimensional incommensurate structure Phys. Rev. B 1984 4272 4276
, ,[10] Z. Gan, H. Krüger. Optimality of log Hölder continuity of the integrated density of states. To appear in Math. Nachr.
[11] Continuous spectrum and uniform localization for ergodic Schrödinger operators J. Funct. Anal. 1997 312 322
[12] Operators with singular continuous spectrum, III. Alomost periodic Schrödinger operators Commun. Math. Phys. 1994 201 205
,[13] Examples of discrete Schrödinger operators with pure point spectrum Commun. Math. Phys. 1983 447 463
[14] A solvable model of quantum motion in an incommensurate potential Phys. Rev. B 1984 6500 6512
, ,[15] L. Ribes, P. Zalesskii. Profinite Groups. Springer-Verlag, Berlin, 2000.
[16] Equilibrium measures and capacities in spectral theory Inverse Probl. Imaging 2007 713 772
[17] J. Wilson. Profinite Groups. Oxford University Press, New York, 1998.
Cité par Sources :