Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_4_a5, author = {S. A. Denisov}, title = {Wave {Equation} with {Slowly} {Decaying} {Potential:} asymptotics of {Solution} and {Wave} {Operators}}, journal = {Mathematical modelling of natural phenomena}, pages = {122--149}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105405}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105405/} }
TY - JOUR AU - S. A. Denisov TI - Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators JO - Mathematical modelling of natural phenomena PY - 2010 SP - 122 EP - 149 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105405/ DO - 10.1051/mmnp/20105405 LA - en ID - MMNP_2010_5_4_a5 ER -
%0 Journal Article %A S. A. Denisov %T Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators %J Mathematical modelling of natural phenomena %D 2010 %P 122-149 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105405/ %R 10.1051/mmnp/20105405 %G en %F MMNP_2010_5_4_a5
S. A. Denisov. Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 122-149. doi : 10.1051/mmnp/20105405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105405/
[1] Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials Geom. Funct. Anal. 2002 1174 1234
,[2] Jost functions and Jost solutions for Jacobi matrices. I. A necessary and sufficient condition for Szegő asymptotics Invent. Math. 2006 1 50
,[3] S. Denisov. On weak asymptotics for Schrödinger evolution. Mathematical Modelling of Natural Phenomena (to appear).
[4] On the existence of wave operators for some Dirac operators with square summable potential Geom. Funct. Anal. 2004 529 534
[5] Asymptotics of the orthogonal polynomials for the Szegő class with a polynomial weight J. Approx. Theory 2006 8 28
,[6] Absolutely continuous spectrum of multidimensional Schrödinger operator Int. Math. Res. Not. 2004 3963 3982
[7] Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum Int. Math. Res. Not. 2002 2029 2061
[8] Sum rules and spectral measure of Schrödinger operators with L2 potentials Ann. of Math. 2009 739 782
,[9] P. Lax, R. Phillips. Scattering theory. Pure and Applied Mathematics, Academic Press Inc., Boston, 1989.
[10] Dense point spectra of Schrödinger and Dirac operators Theor. Mat. Fiz. 1986 18 28
[11] B. Simon. Orthogonal polynomials on the unit circle. Parts 1 and 2. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 2005.
[12] Some Schrödinger operators with dense point spectrum Proc. Amer. Math. Soc. 1997 203 208
Cité par Sources :