Boundary Data Maps for Schrödinger Operators on a Compact Interval
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 73-121.

Voir la notice de l'article provenant de la source EDP Sciences

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent of the underlying Schrödinger operator and the associated boundary trace maps, Krein-type resolvent formulas relating Schrödinger operators corresponding to different (separated) boundary conditions, and a derivation of the Herglotz property of boundary data maps (up to right multiplication by an appropriate diagonal matrix) in the special self-adjoint case.
DOI : 10.1051/mmnp/20105404

S. Clark 1 ; F. Gesztesy 2 ; M. Mitrea 2

1 Department of Mathematics & Statistics, Missouri University of Science and Technology Rolla, MO 65409, USA
2 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
@article{MMNP_2010_5_4_a4,
     author = {S. Clark and F. Gesztesy and M. Mitrea},
     title = {Boundary {Data} {Maps} for {Schr\"odinger} {Operators} on a {Compact} {Interval}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {73--121},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105404/}
}
TY  - JOUR
AU  - S. Clark
AU  - F. Gesztesy
AU  - M. Mitrea
TI  - Boundary Data Maps for Schrödinger Operators on a Compact Interval
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 73
EP  - 121
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105404/
DO  - 10.1051/mmnp/20105404
LA  - en
ID  - MMNP_2010_5_4_a4
ER  - 
%0 Journal Article
%A S. Clark
%A F. Gesztesy
%A M. Mitrea
%T Boundary Data Maps for Schrödinger Operators on a Compact Interval
%J Mathematical modelling of natural phenomena
%D 2010
%P 73-121
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105404/
%R 10.1051/mmnp/20105404
%G en
%F MMNP_2010_5_4_a4
S. Clark; F. Gesztesy; M. Mitrea. Boundary Data Maps for Schrödinger Operators on a Compact Interval. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 73-121. doi : 10.1051/mmnp/20105404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105404/

[1] N. I. Akhiezer, I. M. Glazman. Theory of linear operators in Hilbert space, Volume II. Pitman, Boston, 1981.

[2] S. Albeverio, J. F. Brasche, M. M. Malamud, H. Neidhardt Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions J. Funct. Anal. 2005 144 188

[3] D. Alpay, J. Behrndt GeneralizedQ-functions and Dirichlet-to-Neumann maps for elliptic differential operators J. Funct. Anal. 2009 1666 1694

[4] W. O. Amrein, D. B. Pearson Moperators: a generalisation of Weyl–Titchmarsh theory J. Comp. Appl. Math. 2004 1 26

[5] Yu. M. Arlinskiĭ, E. R. Tsekanovskiĭ On von Neumann’s problem in extension theory of nonnegative operators Proc. Amer. Math. Soc. 2003 3143 3154

[6] Yu. M. Arlinskiĭ, E. R. Tsekanovskiĭ The von Neumann problem for nonnegative symmetric operators Integr. Eq. Operator Th. 2005 319 356

[7] S. A. Avdonin, M. I. Belishev, S. A. Ivanov Boundary control and a matrix inverse problem for the equation utt − uxx + V(x)u Math. USSR Sbornik 1992 287 310

[8] S. Avdonin, P. Kurasov Inverse problems for quantum trees Inverse Probl. Imaging 2008 1 21

[9] S. Avdonin, S. Lenhart, V. Protopopescu Solving the dynamical inverse problem for the Schrödinger equation by the boundary control method Inverse Probl. 2002 349 361

[10] S. Avdonin, S. Lenhart, V. Protopopescu Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method J. Inv. Ill-Posed Probl. 2005 1 14

[11] J. Behrndt, M. Langer Boundary value problems for partial differential operators on bounded domains J. Funct. Anal. 2007 536 565

[12] J. Behrndt, M. M. Malamud, H. Neidhardt Scattering matrices and Weyl functions Proc. London Math. Soc. 2008 568 598

[13] J. F. Brasche, M. M. Malamud, H. Neidhardt.Weyl functions and singular continuous spectra of self-adjoint extensions in Stochastic processes, physics and geometry: New interplays. II. A volume in honor of Sergio Albeverio. F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, S. Scarlatti (eds.). Canadian Mathematical Society Conference Proceedings, Vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 75–84.

[14] J. F. Brasche, M. M. Malamud, H. Neidhardt Weyl function and spectral properties of self-adjoint extensions Integral Eq. Operator Th. 2002 264 289

[15] B. M. Brown, G. Grubb, I. G. Wood M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems Math. Nachr. 2009 314 347

[16] M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko, I. Wood The abstract Titchmarsh–Weyl M-function for adjoint operator pairs and its relation to the spectrum Integral Equ. Operator Th. 2009 297 320

[17] B. M. Brown, M. Marletta Spectral inclusion and spectral exactness for PDE’s on exterior domains IMA J. Numer. Anal. 2004 21 43

[18] B. M. Brown, M. Marletta, S. Naboko, I. Wood Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices J. London Math. Soc. 2008 700 718

[19] J. Brüning, V. Geyler, K. Pankrashkin Spectra of self-adjoint extensions and applications to solvable Schrödinger operators Rev. Math. Phys. 2008 1 70

[20] R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Birkhäuser, Basel, 1990.

[21] S. Clark, F. Gesztesy Weyl–Titchmarsh M-function asymptotics and Borg-type theorems for Dirac operators Trans. Amer. Math. Soc. 2002 3475 3534

[22] S. Clark, F. Gesztesy.On self-adjoint and J-self-adjoint Dirac-type operators: A case study, in Recent advances in differential equations and mathematical physics. N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, R. Weikard (eds.). Contemp. Math., Vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 103–140.

[23] E. A. Coddington, N. Levinson. Theory of ordinary differential equations. Krieger, Malabar, 1985.

[24] V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. De Snoo Generalized resolvents of symmetric operators and admissibility Meth. Funct. Anal. Top. 2000 24 55

[25] V. Derkach, S. Hassi, M. Malamud, H. De Snoo Boundary relations and their Weyl families Trans. Amer. Math. Soc. 2006 5351 5400

[26] V. A. Derkach, M. M. Malamud Generalized resolvents and the boundary value problems for Hermitian operators with gaps J. Funct. Anal. 1991 1 95

[27] V. A. Derkach, M. M. Malamud Characteristic functions of almost solvable extensions of Hermitian operators Ukrain. Math. J. 1992 379 401

[28] V. A. Derkach, M. M. Malamud The extension theory of Hermitian operators and the moment problem J. Math. Sci. 1995 141 242

[29] N. Dunford, J. T. Schwartz. Linear operators Part II: Spectral theory. Interscience, New York, 1988.

[30] C. Fox, V. Oleinik, B. Pavlov.A Dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks, in Recent advances in differential equations and mathematical physics. N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, R. Weikard (eds.). Contemp. Math. Vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 151–169.

[31] F. Gesztesy, H. Holden. Soliton equations and their algebro-geometric solutions. Volume I: (1 + 1)-Dimensional continuous models. Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge University Press, Cambridge, 2003.

[32] F. Gesztesy, H. Holden, B. Simon, Z. Zhao Higher order trace relations for Schrödinger operators Rev. Math. Phys. 1995 893 922

[33] F. Gesztesy, N. J. Kalton, K. A. Makarov, E. Tsekanovskii.Some applications of operator-valued Herglotz functions, in Operator theory, system theory and telated topics. The Moshe Livšic anniversary volume. D. Alpay, V. Vinnikov (eds.). Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, 2001, pp. 271–321.

[34] F. Gesztesy, K. A. Makarov, E. Tsekanovskii An Addendum to Krein’s formula J. Math. Anal. Appl. 1998 594 606

[35] F. Gesztesy, M. Mitrea.Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in partial differential equations, harmonic analysis and applications: A volume in honor of Vladimir G. Maz’ya’s 70th birthday. D. Mitrea, M. Mitrea (eds.). Proceedings of Symposia in Pure Mathematics, Vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.

[36] F. Gesztesy, M. Mitrea.Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Modern analysis and applications. The Mark Krein cetenary conference, Vol. 2. V. Adamyan, Y. M. Berezansky, I. Gohberg, M. L. Gorbachuk, V. Gorbachuk, A. N. Kochubei, H. Langer, G. Popov (eds.). Operator Theory: Advances and Applications, Vol. 191, Birkhäuser, Basel, 2009, pp. 81–113.

[37] F. Gesztesy, M. Mitrea Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities J. Diff. Eq. 2009 2871 2896

[38] F. Gesztesy, M. Mitrea.Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains. Preprint, 2009.

[39] F. Gesztesy, M. Mitrea, M. Zinchenko Variations on a theme of Jost and Pais J. Funct. Anal. 2007 399 448

[40] F. Gesztesy, R. Ratnaseelan, G. Teschl.The KdV hierarchy and associated trace formulas, in Recent developments in operator theory and its applications. I. Gohberg, P. Lancaster, and P. N. Shivakumar (eds.). Operator Theory: Advances and Applications, Vol. 87, Birkhäuser, Basel, 1996, pp. 125–163.

[41] F. Gesztesy, B. Simon Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators Trans. Amer. Math. Soc. 1996 349 373

[42] F. Gesztesy, E. Tsekanovskii On matrix-valued Herglotz functions Math. Nachr. 2000 61 138

[43] F. Gesztesy and M. Zinchenko, Boundary Data Maps, Perturbation Determinants, and Krein-Type Resolvent Formulas for Schrödinger Operators on Compact Intervals, preprint, 2010.

[44] V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations. Kluwer, Dordrecht, 1991.

[45] G. Grubb Krein resolvent formulas for elliptic boundary problems in nonsmooth domains Rend. Semin. Mat. Univ. Politec. Torino 2008 271 297

[46] G. Grubb. Distributions and operators. Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.

[47] T. Kato. Perturbation theory for linear operators. Corr. printing of the 2nd ed., Springer, Berlin, 1980.

[48] A. Kiselev, B. Simon Rank one perturbations with infinitesimal coupling J. Funct. Anal. 1995 345 356

[49] M. G. Krein, I. E. Ovcharenko Q-functions and sc-resolvents of nondensely defined hermitian contractions Sib. Math. J. 1977 728 746

[50] M. G. Krein, I. E. Ovčarenko Inverse problems for Q-functions and resolvent matrices of positive hermitian operators Sov. Math. Dokl. 1978 1131 1134

[51] M. G. Krein, S. N. Saakjan Some new results in the theory of resolvents of hermitian operators Sov. Math. Dokl. 1966 1086 1089

[52] M. G. Krein, Ju. L. Smul’Jan On linear-fractional transformations with operator coefficients Amer. Math. Soc. Transl. 1974 125 152

[53] P. Kurasov Triplet extensions I: Semibounded operators in the scale of Hilbert spaces J. Analyse Math. 2009 251 286

[54] P. Kurasov, S. T. Kuroda Krein’s resolvent formula and perturbation theory J. Operator Th. 2004 321 334

[55] H. Langer, B. Textorius On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space Pacific J. Math. 1977 135 165

[56] B. M. Levitan. Inverse Sturm–Liouville problems. VNU Science Press, Utrecht, 1987.

[57] B. M. Levitan, I. S. Sargsjan. Introduction to spectral theory. Amer. Math. Soc., Providence, RI, 1975.

[58] M. M. Malamud, V. I. Mogilevskii Krein type formula for canonical resolvents of dual pairs of linear relations Methods Funct. Anal. Topology 2002 72 100

[59] V. A. Marchenko Some questions in the theory of one-dimensional linear differential operators of the second order, I Trudy Moskov. Mat. Obšč. 1952 327 420

[60] V. A. Marchenko. Sturm–Liouville operators and applications. Birkhäuser, Basel, 1986.

[61] M. Marletta Eigenvalue problems on exterior domains and Dirichlet to Neumann maps J. Comp. Appl. Math. 2004 367 391

[62] S. Nakamura A remark on the Dirichlet–Neumann decoupling and the integrated density of states J. Funct. Anal. 2001 136 152

[63] G. Nenciu Applications of the Kreĭn resolvent formula to the theory of self-adjoint extensions of positive symmetric operators J. Operator Th. 1983 209 218

[64] K. Pankrashkin Resolvents of self-adjoint extensions with mixed boundary conditions Rep. Math. Phys. 2006 207 221

[65] B. Pavlov The theory of extensions and explicitly-soluble models Russ. Math. Surv. 1987 127 168

[66] B. Pavlov.S-matrix and Dirichlet-to-Neumann operators. Ch. 6.1.6 in Scattering: Scattering and inverse scattering in pure and applied science, Vol. 2. R. Pike, P. Sabatier (eds.). Academic Press, San Diego, 2002, pp. 1678–1688.

[67] B. Pavlov Krein formula with compensated singularities for the ND-mapping and the generalized Kirchhoff condition at the Neumann Schrödinger junction Russ. J. Math. Phys. 2008 364 388

[68] D. B. Pearson. Quantum scattering and spectral theory. Academic Press, London, 1988.

[69] A. Posilicano A Krein-like formula for singular perturbations of self-adjoint operators and applications J. Funct. Anal. 2001 109 147

[70] A. Posilicano Self-adjoint extensions by additive perturbations Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2003 1 20

[71] A. Posilicano Boundary triples and Weyl functions for singular perturbations of self-adjoint operators Meth. Funct. Anal. Topology 2004 57 63

[72] A. Posilicano Self-adjoint extensions of restrictions Operators and Matrices 2008 483 506

[73] A. Posilicano, L. Raimondi.Krein’s resolvent formula for self-adjoint extensions of symmetric second-order elliptic differential operators. J. Phys. A: Math. Theor., 42 (2009), 015204 (11pp).

[74] A. Rybkin On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators Inverse Probl. Imaging 2009 139 149

[75] V. Ryzhov A general boundary value problem and its Weyl function Opuscula Math. 2007 305 331

[76] V. Ryzhov Weyl–Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control Complex Anal. Operator Theory 2009 289 322

[77] V. Ryzhov.Spectral boundary value problems and their linear operators. Preprint, 2009.

[78] Sh. N. Saakjan On the theory of the resolvents of a symmetric operator with infinite deficiency indices Dokl. Akad. Nauk Arm. SSR 1965 193 198

[79] A. V. Straus Extensions and generalized resolvents of a non-densely defined symmetric operator Math. USSR Izv. 1970 179 208

[80] E. C. Titchmarsh. Eigenfunction expansions, Part I. 2nd ed., Clarendon Press, Oxford, 1962.

[81] E. C. Titchmarsh. The theory of functions. 2nd ed., Oxford University Press, Oxford, 1985.

[82] E. R. Tsekanovskii, Yu. L. Shmul’Yan The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions Russ. Math. Surv. 1977 73 131

Cité par Sources :