Voir la notice de l'article provenant de la source EDP Sciences
Thomas Chen 1 ; Nataša Pavlović 1
@article{MMNP_2010_5_4_a3, author = {Thomas Chen and Nata\v{s}a Pavlovi\'c}, title = {Recent {Results} on the {Cauchy} {Problem} for {Focusing} and {Defocusing} {Gross-Pitaevskii} {Hierarchies}}, journal = {Mathematical modelling of natural phenomena}, pages = {54--72}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105403}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/} }
TY - JOUR AU - Thomas Chen AU - Nataša Pavlović TI - Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies JO - Mathematical modelling of natural phenomena PY - 2010 SP - 54 EP - 72 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/ DO - 10.1051/mmnp/20105403 LA - en ID - MMNP_2010_5_4_a3 ER -
%0 Journal Article %A Thomas Chen %A Nataša Pavlović %T Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies %J Mathematical modelling of natural phenomena %D 2010 %P 54-72 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/ %R 10.1051/mmnp/20105403 %G en %F MMNP_2010_5_4_a3
Thomas Chen; Nataša Pavlović. Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 54-72. doi : 10.1051/mmnp/20105403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/
[1] Rigorous derivation of the cubic NLS in dimension one J. Stat. Phys. 2007 1194 1220
, ,[2] Bose-Einstein Quantum Phase Transition in an Optical Lattice Model Phys. Rev. A 2004
, , , ,[3] I. Anapolitanos, I.M. Sigal. The Hartree-von Neumann limit of many body dynamics. Preprint http://arxiv.org/abs/0904.4514.
[4] Smooth Feshbach map and operator-theoretic renormalization group methods J. Funct. Anal. 2003 44 92
, , ,[5] T. Cazenave. Semilinear Schrödinger equations. Courant lecture notes, 10 (2003), Amer. Math. Soc..
[6] T. Chen, N. Pavlović. The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Functional Analysis, conditionally accepted. Preprint http://arxiv.org/abs/0812.2740.
[7] On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies Discr. Contin. Dyn. Syst. 2010 715 739
,[8] T. Chen, N. Pavlović. A short proof of local wellposedness for focusing and defocusing Gross-Pitaevskii hierarchies. Preprint http://arxiv.org/abs/0906.3277.
[9] T. Chen, N. Pavlović. Higher order energy conservation, Gagliardo-Nirenberg-Sobolev inequalities, and global well-posedness for Gross-Pitaevskii hierarchies. Preprint http://arxiv.org/abs/0906.2984.
[10] T. Chen, N. Pavlović, N. Tzirakis. Energy conservation and blowup of solutions for focusing GP hierarchies. Preprint http://arXiv.org/abs/0905.2704.
[11] Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons Arch. Rat. Mech. Anal. 2006 265 283
, , ,[12] Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate Comm. Pure Appl. Math. 2006 1659 1741
, ,[13] Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems Invent. Math. 2007 515 614
, ,[14] Derivation of the nonlinear Schrödinger equation from a many body Coulomb system Adv. Theor. Math. Phys. 2001 1169 1205
,[15] Mean-field- and classical limit of many-body Schrödinger dynamics for bosons Comm. Math. Phys. 2007 681 697
, ,[16] Atomism and quantization J. Phys. A 2007 3033 3045
, ,[17] J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Preprint arXiv:0805.4299.
[18] M. Grillakis, M. Machedon, A. Margetis. Second-order corrections to mean field evolution for weakly interacting Bosons I. Preprint http://arxiv.org/abs/0904.0158.
[19] A priori estimates for many-body Hamiltonian evolution of interacting boson system J. Hyperbolic Differ. Equ. 2008 857 883
,[20] The classical limit for quantum mechanical correlation functions Comm. Math. Phys. 1974 265 277
[21] On the uniqueness of solutions to the Gross-Pitaevskii hierarchy Commun. Math. Phys. 2008 169 185
,[22] K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Preprint arXiv:0808.0505.
[23] Proof of Bose-Einstein condensation for dilute trapped gases Phys. Rev. Lett. 2002
,[24] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its condensation. Birkhäuser (2005).
[25] A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas Commun. Math. Phys. 2001 17 31
, ,[26] Quantum fluctuations and rate of convergence towards mean field dynamics Comm. Math. Phys. 2009 31 611
,[27] B. Schlein. Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics. Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.
[28] Kinetic Equations from Hamiltonian Dynamics Rev. Mod. Phys. 1980 569 615
[29] T. Tao.Nonlinear dispersive equations. Local and global analysis. CBMS 106 (2006), AMS.
Cité par Sources :