Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 54-72.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we review some of our recent results in the study of the dynamics of interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the well-posedness of the associated Cauchy problem for the infinite particle system described by the GP hierarchy.
DOI : 10.1051/mmnp/20105403

Thomas Chen 1 ; Nataša Pavlović 1

1 University of Texas at Austin, Department of Mathematics, Austin, TX 78712, USA
@article{MMNP_2010_5_4_a3,
     author = {Thomas Chen and Nata\v{s}a Pavlovi\'c},
     title = {Recent {Results} on the {Cauchy} {Problem} for {Focusing} and {Defocusing} {Gross-Pitaevskii} {Hierarchies}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {54--72},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/}
}
TY  - JOUR
AU  - Thomas Chen
AU  - Nataša Pavlović
TI  - Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 54
EP  - 72
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/
DO  - 10.1051/mmnp/20105403
LA  - en
ID  - MMNP_2010_5_4_a3
ER  - 
%0 Journal Article
%A Thomas Chen
%A Nataša Pavlović
%T Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
%J Mathematical modelling of natural phenomena
%D 2010
%P 54-72
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/
%R 10.1051/mmnp/20105403
%G en
%F MMNP_2010_5_4_a3
Thomas Chen; Nataša Pavlović. Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 54-72. doi : 10.1051/mmnp/20105403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105403/

[1] R. Adami, G. Golse, A. Teta Rigorous derivation of the cubic NLS in dimension one J. Stat. Phys. 2007 1194 1220

[2] M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason Bose-Einstein Quantum Phase Transition in an Optical Lattice Model Phys. Rev. A 2004

[3] I. Anapolitanos, I.M. Sigal. The Hartree-von Neumann limit of many body dynamics. Preprint http://arxiv.org/abs/0904.4514.

[4] V. Bach, T. Chen, J. Fröhlich, I.M. Sigal Smooth Feshbach map and operator-theoretic renormalization group methods J. Funct. Anal. 2003 44 92

[5] T. Cazenave. Semilinear Schrödinger equations. Courant lecture notes, 10 (2003), Amer. Math. Soc..

[6] T. Chen, N. Pavlović. The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Functional Analysis, conditionally accepted. Preprint http://arxiv.org/abs/0812.2740.

[7] T. Chen, N. Pavlović On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies Discr. Contin. Dyn. Syst. 2010 715 739

[8] T. Chen, N. Pavlović. A short proof of local wellposedness for focusing and defocusing Gross-Pitaevskii hierarchies. Preprint http://arxiv.org/abs/0906.3277.

[9] T. Chen, N. Pavlović. Higher order energy conservation, Gagliardo-Nirenberg-Sobolev inequalities, and global well-posedness for Gross-Pitaevskii hierarchies. Preprint http://arxiv.org/abs/0906.2984.

[10] T. Chen, N. Pavlović, N. Tzirakis. Energy conservation and blowup of solutions for focusing GP hierarchies. Preprint http://arXiv.org/abs/0905.2704.

[11] A. Elgart, L. Erdös, B. Schlein, H.-T. Yau Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons Arch. Rat. Mech. Anal. 2006 265 283

[12] L. Erdös, B. Schlein, H.-T. Yau Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate Comm. Pure Appl. Math. 2006 1659 1741

[13] L. Erdös, B. Schlein, H.-T. Yau Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems Invent. Math. 2007 515 614

[14] L. Erdös, H.-T. Yau Derivation of the nonlinear Schrödinger equation from a many body Coulomb system Adv. Theor. Math. Phys. 2001 1169 1205

[15] J. Fröhlich, S. Graffi, S. Schwarz Mean-field- and classical limit of many-body Schrödinger dynamics for bosons Comm. Math. Phys. 2007 681 697

[16] J. Fröhlich, A. Knowles, A. Pizzo Atomism and quantization J. Phys. A 2007 3033 3045

[17] J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Preprint arXiv:0805.4299.

[18] M. Grillakis, M. Machedon, A. Margetis. Second-order corrections to mean field evolution for weakly interacting Bosons I. Preprint http://arxiv.org/abs/0904.0158.

[19] M. Grillakis, A. Margetis A priori estimates for many-body Hamiltonian evolution of interacting boson system J. Hyperbolic Differ. Equ. 2008 857 883

[20] K. Hepp The classical limit for quantum mechanical correlation functions Comm. Math. Phys. 1974 265 277

[21] S. Klainerman, M. Machedon On the uniqueness of solutions to the Gross-Pitaevskii hierarchy Commun. Math. Phys. 2008 169 185

[22] K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Preprint arXiv:0808.0505.

[23] E.H. Lieb, R. Seiringer Proof of Bose-Einstein condensation for dilute trapped gases Phys. Rev. Lett. 2002

[24] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its condensation. Birkhäuser (2005).

[25] E.H. Lieb, R. Seiringer, J. Yngvason A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas Commun. Math. Phys. 2001 17 31

[26] I. Rodnianski, B. Schlein Quantum fluctuations and rate of convergence towards mean field dynamics Comm. Math. Phys. 2009 31 611

[27] B. Schlein. Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics. Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.

[28] H. Spohn Kinetic Equations from Hamiltonian Dynamics Rev. Mod. Phys. 1980 569 615

[29] T. Tao.Nonlinear dispersive equations. Local and global analysis. CBMS 106 (2006), AMS.

Cité par Sources :