Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 32-53.

Voir la notice de l'article provenant de la source EDP Sciences

We study discrete spectrum in spectral gaps of an elliptic periodic second order differential operator in L2(ℝd) perturbed by a decaying potential. It is assumed that a perturbation is nonnegative and has a power-like behavior at infinity. We find asymptotics in the large coupling constant limit for the number of eigenvalues of the perturbed operator that have crossed a given point inside the gap or the edge of the gap. The corresponding asymptotics is power-like and depends on the observation point.
DOI : 10.1051/mmnp/20105402

M. Sh. Birman 1 ; V. A. Sloushch 1

1 Department of Physics, St. Petersburg State University, Ul’yanovskaya 3, Petrodvorets, St. Petersburg, 198504, RUSSIA
@article{MMNP_2010_5_4_a2,
     author = {M. Sh. Birman and V. A. Sloushch},
     title = {Discrete {Spectrum} of the {Periodic} {Schr\"odinger} {Operator} with a {Variable} {Metric} {Perturbed} by a {Nonnegative} {Potential}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {32--53},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - V. A. Sloushch
TI  - Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 32
EP  - 53
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/
DO  - 10.1051/mmnp/20105402
LA  - en
ID  - MMNP_2010_5_4_a2
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A V. A. Sloushch
%T Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential
%J Mathematical modelling of natural phenomena
%D 2010
%P 32-53
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/
%R 10.1051/mmnp/20105402
%G en
%F MMNP_2010_5_4_a2
M. Sh. Birman; V. A. Sloushch. Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 32-53. doi : 10.1051/mmnp/20105402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/

[1] M. Sh. Birman The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential Algebra i Analiz 1996 3 20

[2] M. Reed, B. Simon. Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, New York, 1978.

[3] M. M. Skriganov. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators. (Russian) Trudy Mat. Inst. Steklov, vol. 171, 1985, 171 pp. English transl., Proc. Steklov Inst. Math., 1987, no. 2, 121 pp.

[4] M. Sh. Birman. The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations. Boundary value problems, Schrödinger operators, deformation quantization, pp. 334–352, Math. Top., 8, Akademie Verlag, Berlin, 1995.

[5] M. Sh. Birman, G. E. Karadzhov, M. Z. Solomyak. Boundedness conditions and spectrum estimates for the operators b(X)a(D) and their analogs. Estimates and asymptotics for discrete spectra of integral and differential equations. Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 85–106.

[6] M. Sh. Birman. Discrete spectrum in the gaps of a continuous one for perturbation with large coupling constant. Estimates and asymptotics for discrete spectra of integral and differential equations. Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 57–73.

[7] S. Alama, P. A. Deift, R. Hempel Eigenvalue branches of the Schrödinger operator H − λW in a gap of σ(H) Commun. Math. Phys. 1989 291 321

[8] M. Sh. Birman. Discrete spectrum of the periodic Schrödinger operator for non–negative perturbations. Mathematical results in quantum mechanics (Blossin, 1993), 3–7. Oper. Theory Adv. Appl., Vol. 70, Birkhäuser, Basel, 1994.

[9] M. Sh. Birman, M. Z. Solomyak. Spectral theory of selfadjoint operators in Hilbert space. D. Reidel Publishing Company, 1987, Dordrecht, Holland.

[10] M. Sh. Birman, M. Z. Solomyak Estimates for the singular numbers of integral operators Uspekhi Mat. Nauk 1977 17 84

[11] M. Sh. Birman, M. Z. Solomyak Compact operators with power-like asymptotics of singular numbers Investigations on linear operators and the theory of functions, 12. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 1983 21 30

[12] V. A. Sloushch. Generalizations of the Cwikel estimate for integral operators. (Russian) Trudy Sankt-Peterburgskogo mat. obshchestva, vol. 14 (2008), 169-196. English transl., Proc. St. Petersburg Math. Soc., vol. XIV, Amer. Math. Soc. Transl. (2), vol. 228, 2009.

[13] M. Sh. Birman, M. Z. Solomyak. Negative discrete spectrum of the Schrödinger operator with large coupling constant: a qualitative discussion. Order, disorder, and chaos in quantum systems (Dubna, 1989). Oper. Theory Adv. Appl., vol. 46, Birkhäuser, Basel, 1990, pp. 3-16.

[14] M. Sh. Birman, M. Z. Solomyak Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols Vestnik Leningrad. Univ. Mat. Mekh. Astronom 1977 13 21

[15] M. Sh. Birman, M. Z. Solomyak Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols. II. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979 5 10

Cité par Sources :