Voir la notice de l'article provenant de la source EDP Sciences
M. Sh. Birman 1 ; V. A. Sloushch 1
@article{MMNP_2010_5_4_a2, author = {M. Sh. Birman and V. A. Sloushch}, title = {Discrete {Spectrum} of the {Periodic} {Schr\"odinger} {Operator} with a {Variable} {Metric} {Perturbed} by a {Nonnegative} {Potential}}, journal = {Mathematical modelling of natural phenomena}, pages = {32--53}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105402}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/} }
TY - JOUR AU - M. Sh. Birman AU - V. A. Sloushch TI - Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential JO - Mathematical modelling of natural phenomena PY - 2010 SP - 32 EP - 53 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/ DO - 10.1051/mmnp/20105402 LA - en ID - MMNP_2010_5_4_a2 ER -
%0 Journal Article %A M. Sh. Birman %A V. A. Sloushch %T Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential %J Mathematical modelling of natural phenomena %D 2010 %P 32-53 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/ %R 10.1051/mmnp/20105402 %G en %F MMNP_2010_5_4_a2
M. Sh. Birman; V. A. Sloushch. Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 32-53. doi : 10.1051/mmnp/20105402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105402/
[1] The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential Algebra i Analiz 1996 3 20
[2] M. Reed, B. Simon. Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, New York, 1978.
[3] M. M. Skriganov. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators. (Russian) Trudy Mat. Inst. Steklov, vol. 171, 1985, 171 pp. English transl., Proc. Steklov Inst. Math., 1987, no. 2, 121 pp.
[4] M. Sh. Birman. The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations. Boundary value problems, Schrödinger operators, deformation quantization, pp. 334–352, Math. Top., 8, Akademie Verlag, Berlin, 1995.
[5] M. Sh. Birman, G. E. Karadzhov, M. Z. Solomyak. Boundedness conditions and spectrum estimates for the operators b(X)a(D) and their analogs. Estimates and asymptotics for discrete spectra of integral and differential equations. Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 85–106.
[6] M. Sh. Birman. Discrete spectrum in the gaps of a continuous one for perturbation with large coupling constant. Estimates and asymptotics for discrete spectra of integral and differential equations. Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 57–73.
[7] Eigenvalue branches of the Schrödinger operator H − λW in a gap of σ(H) Commun. Math. Phys. 1989 291 321
, ,[8] M. Sh. Birman. Discrete spectrum of the periodic Schrödinger operator for non–negative perturbations. Mathematical results in quantum mechanics (Blossin, 1993), 3–7. Oper. Theory Adv. Appl., Vol. 70, Birkhäuser, Basel, 1994.
[9] M. Sh. Birman, M. Z. Solomyak. Spectral theory of selfadjoint operators in Hilbert space. D. Reidel Publishing Company, 1987, Dordrecht, Holland.
[10] Estimates for the singular numbers of integral operators Uspekhi Mat. Nauk 1977 17 84
,[11] Compact operators with power-like asymptotics of singular numbers Investigations on linear operators and the theory of functions, 12. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 1983 21 30
,[12] V. A. Sloushch. Generalizations of the Cwikel estimate for integral operators. (Russian) Trudy Sankt-Peterburgskogo mat. obshchestva, vol. 14 (2008), 169-196. English transl., Proc. St. Petersburg Math. Soc., vol. XIV, Amer. Math. Soc. Transl. (2), vol. 228, 2009.
[13] M. Sh. Birman, M. Z. Solomyak. Negative discrete spectrum of the Schrödinger operator with large coupling constant: a qualitative discussion. Order, disorder, and chaos in quantum systems (Dubna, 1989). Oper. Theory Adv. Appl., vol. 46, Birkhäuser, Basel, 1990, pp. 3-16.
[14] Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols Vestnik Leningrad. Univ. Mat. Mekh. Astronom 1977 13 21
,[15] Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols. II. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979 5 10
,Cité par Sources :