Voir la notice de l'article provenant de la source EDP Sciences
S. A. Avdonin 1 ; B. P. Belinskiy 2 ; L. Pandolfi 3
@article{MMNP_2010_5_4_a1, author = {S. A. Avdonin and B. P. Belinskiy and L. Pandolfi}, title = {Controllability of a {Nonhomogeneous} {String} and {Ring} under {Time} {Dependent} {Tension}}, journal = {Mathematical modelling of natural phenomena}, pages = {4--31}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105401}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/} }
TY - JOUR AU - S. A. Avdonin AU - B. P. Belinskiy AU - L. Pandolfi TI - Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension JO - Mathematical modelling of natural phenomena PY - 2010 SP - 4 EP - 31 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/ DO - 10.1051/mmnp/20105401 LA - en ID - MMNP_2010_5_4_a1 ER -
%0 Journal Article %A S. A. Avdonin %A B. P. Belinskiy %A L. Pandolfi %T Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension %J Mathematical modelling of natural phenomena %D 2010 %P 4-31 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/ %R 10.1051/mmnp/20105401 %G en %F MMNP_2010_5_4_a1
S. A. Avdonin; B. P. Belinskiy; L. Pandolfi. Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 4-31. doi : 10.1051/mmnp/20105401. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/
[1] Controllability of a string under tension Discrete and Continuous Dynamical Systems: A Supplement Volume 2003 57 67
,[2] On the basis properties of the functions arising in the boundary control problem of a string with a variable tension Discrete and Continuous Dynamical Systems: A Supplement Volume 2005 40 49
,[3] On controllability of a rotating string J. Math. Anal. Appl. 2006 198 212
,[4] On controllability of an elastic ring Appl. Math. Optim. 2009 71 103
, ,[5] S. A. Avdonin and S. A. Ivanov. Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York, 1995.
[6] Exponential Riesz bases of subspaces and divided differences St. Petersburg Mathematical Journal 2001 339 351
,[7] Solving the dynamical inverse problem for the Schrödinger equation by the Boundary Control method Inverse Problems 2002 41 57
, ,[8] Ingham type inequalities and Riesz bases of divided differences Int. J. Appl. Math. Comput. Sci. 2001 101 118
,[9] Simultaneous control problems for systems of elastic strings and beams Systems and Control Letters 2001 147 155
,[10] On the simultaneously reachable set of two strings ESAIM: Control, Optimization and Calculus of Variations 2001 259 273
,[11] Approximate controllability of the heat equation with memory Differential and Integral Equations 2000 1393 1412
,[12] On controllability of an elastic string with a viscous damping Numerical Functional Anal. and Optimization 1998 227 255
, , ,[13] Canonical model of a dynamical system with boundary control in inverse problem for the heat equation St. Petersburg Math. Journal 1996 869 890
[14] A. Erdélyi. Asymptotic Expansions. Dover Publications, Inc., 1956.
[15] I. C. Gohberg and M. G. Krein. Introduction to the Theory of Linear Nonselfadjoint Operators", Translations of Mathematical Monographs. American Mathematical Society. 18, Providence, RI, 1969.
[16] J. P. Den Hartog. Mechanical Vibrations. McGraw-Hill Book Company, New York, 1956.
[17] Exact controllability and stabilization of a vibrating string with an interior point mass SIAM J. Control Optim. 1995 1357 1391
,[18] T. von Kàrmàn and M. A. Biot. Mathematical Methods in Engineering. McGraw-Hill Book Company, New York, 1940.
[19] O. A. Ladyzhenskaia. The Boundary Value Problems of Mathematical Physics. Springer-Verlag, New York, 1985.
[20] B. M. Levitan and I. S. Sargsjan. Sturm–Liouville and Dirac Operators. Translated from the Russian. Mathematics and its Applications (Soviet Series), 59. Kluwer Academic Publishers Group, Dordrecht, 1991.
[21] N. W. McLachlan. Theory and Applications of Mathieu Functions, Oxford, 1947.
[22] Steady-state vibrations of an elastic ring under moving load J. Sound and Vibration 2000 511 524
,[23] The controllability of the Gurtin-Pipkin equation: a cosine operator approach Applied Mathematics and Optimization 2005 143 165
[24] Riesz system and the controllability of heat equations with memory Integral Eq. Oper. Theory 2009 429 453
[25] L. Pandolfi, Riesz systems, spectral controllability and an identification problem for heat equations with memory . Quaderni del Dipartimento di Matematica, Politecnico di Torino, “La Matematica e le sue Applicazioni”n. 6-2009 (in print, Discr. Cont. Dynam. Systems).
[26] L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension. Quaderni del Dipartimento di Matematica, Politecnico di Torino, “La Matematica e le sue Applicazioni”n. 5-2009 (in print, Discr. Cont. Dynam. Systems).
[27] Nonharmonic Fourier series in the control theory of distributed parameter systems J. Math. Anal. Appl. 1967 542 559
[28] Controllability and stabilizability theory for linear partial differential equations SIAM Review 1978 639 739
[29] On exponential bases for the Sobolev spaces over an interval J. Math.Anal.Appl. 1982 528 550
[30] W. Soedel. Vibrations of Shells and Plates. Marcel Dekker, Inc., New York, 1993.
[31] M. E. Taylor. Pseudodifferential Operators. Princeton University Press, Princeton, NJ, 1981.
[32] S. Timoshenko. Thèorie des Vibrations. Libr. Polytecnique Ch Bèranger, Paris, 1947.
[33] V. Z. Vlasov. ObŽcaya Teoriya Obolocek i eë Prilođeniya v Tehnike (in Russian) [General Theory of Shells and Its Applications in Technology]. Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticeskoi Literatury, Moscow-Leningrad (1949).
[34] Controllability and observability of the heat equation with hyperbolic memory kernel J. Diff. Equations 2009 2395 2439
, ,Cité par Sources :