Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 4-31.

Voir la notice de l'article provenant de la source EDP Sciences

We study controllability for a nonhomogeneous string and ring under an axial stretching tension that varies with time. We consider the boundary control for a string and distributed control for a ring. For a string, we are looking for a control f(t) ∈ L2(0, T) that drives the state solution to rest. We show that for a ring, two forces are required to achieve controllability. The controllability problem is reduced to a moment problem for the control. We describe the set of initial data which may be driven to rest by the control. The proof is based on an auxiliary basis property result.
DOI : 10.1051/mmnp/20105401

S. A. Avdonin 1 ; B. P. Belinskiy 2 ; L. Pandolfi 3

1 University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
2 University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403-2598, USA
3 Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{MMNP_2010_5_4_a1,
     author = {S. A. Avdonin and B. P. Belinskiy and L. Pandolfi},
     title = {Controllability of a {Nonhomogeneous} {String} and {Ring} under {Time} {Dependent} {Tension}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {4--31},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105401},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - B. P. Belinskiy
AU  - L. Pandolfi
TI  - Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 4
EP  - 31
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/
DO  - 10.1051/mmnp/20105401
LA  - en
ID  - MMNP_2010_5_4_a1
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A B. P. Belinskiy
%A L. Pandolfi
%T Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension
%J Mathematical modelling of natural phenomena
%D 2010
%P 4-31
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/
%R 10.1051/mmnp/20105401
%G en
%F MMNP_2010_5_4_a1
S. A. Avdonin; B. P. Belinskiy; L. Pandolfi. Controllability of a Nonhomogeneous String and Ring under Time Dependent Tension. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 4-31. doi : 10.1051/mmnp/20105401. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105401/

[1] S. A. Avdonin, B. P. Belinskiy Controllability of a string under tension Discrete and Continuous Dynamical Systems: A Supplement Volume 2003 57 67

[2] S. A. Avdonin, B. P. Belinskiy On the basis properties of the functions arising in the boundary control problem of a string with a variable tension Discrete and Continuous Dynamical Systems: A Supplement Volume 2005 40 49

[3] S. A. Avdonin, B. P. Belinskiy On controllability of a rotating string J. Math. Anal. Appl. 2006 198 212

[4] S. A. Avdonin, B. P. Belinskiy, S. A. Ivanov On controllability of an elastic ring Appl. Math. Optim. 2009 71 103

[5] S. A. Avdonin and S. A. Ivanov. Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York, 1995.

[6] S. A. Avdonin, S. A. Ivanov Exponential Riesz bases of subspaces and divided differences St. Petersburg Mathematical Journal 2001 339 351

[7] S. Avdonin, S. Lenhart, V. Protopopescu Solving the dynamical inverse problem for the Schrödinger equation by the Boundary Control method Inverse Problems 2002 41 57

[8] S. Avdonin, W. Moran Ingham type inequalities and Riesz bases of divided differences Int. J. Appl. Math. Comput. Sci. 2001 101 118

[9] S. A. Avdonin, W. Moran Simultaneous control problems for systems of elastic strings and beams Systems and Control Letters 2001 147 155

[10] S. A. Avdonin, M. Tucsnak On the simultaneously reachable set of two strings ESAIM: Control, Optimization and Calculus of Variations 2001 259 273

[11] V. Barbu, M. Iannelli Approximate controllability of the heat equation with memory Differential and Integral Equations 2000 1393 1412

[12] B. P. Belinskiy, J. P. Dauer, C. F. Martin, M. A. Shubov On controllability of an elastic string with a viscous damping Numerical Functional Anal. and Optimization 1998 227 255

[13] M. I. Belishev Canonical model of a dynamical system with boundary control in inverse problem for the heat equation St. Petersburg Math. Journal 1996 869 890

[14] A. Erdélyi. Asymptotic Expansions. Dover Publications, Inc., 1956.

[15] I. C. Gohberg and M. G. Krein. Introduction to the Theory of Linear Nonselfadjoint Operators", Translations of Mathematical Monographs. American Mathematical Society. 18, Providence, RI, 1969.

[16] J. P. Den Hartog. Mechanical Vibrations. McGraw-Hill Book Company, New York, 1956.

[17] S. Hansen, E. Zuazua Exact controllability and stabilization of a vibrating string with an interior point mass SIAM J. Control Optim. 1995 1357 1391

[18] T. von Kàrmàn and M. A. Biot. Mathematical Methods in Engineering. McGraw-Hill Book Company, New York, 1940.

[19] O. A. Ladyzhenskaia. The Boundary Value Problems of Mathematical Physics. Springer-Verlag, New York, 1985.

[20] B. M. Levitan and I. S. Sargsjan. Sturm–Liouville and Dirac Operators. Translated from the Russian. Mathematics and its Applications (Soviet Series), 59. Kluwer Academic Publishers Group, Dordrecht, 1991.

[21] N. W. McLachlan. Theory and Applications of Mathieu Functions, Oxford, 1947.

[22] A. V. Metrikine, M. V. Tochilin Steady-state vibrations of an elastic ring under moving load J. Sound and Vibration 2000 511 524

[23] L. Pandolfi The controllability of the Gurtin-Pipkin equation: a cosine operator approach Applied Mathematics and Optimization 2005 143 165

[24] L. Pandolfi Riesz system and the controllability of heat equations with memory Integral Eq. Oper. Theory 2009 429 453

[25] L. Pandolfi, Riesz systems, spectral controllability and an identification problem for heat equations with memory . Quaderni del Dipartimento di Matematica, Politecnico di Torino, “La Matematica e le sue Applicazioni”n. 6-2009 (in print, Discr. Cont. Dynam. Systems).

[26] L. Pandolfi, Riesz systems and moment method in the study of viscoelasticity in one space dimension. Quaderni del Dipartimento di Matematica, Politecnico di Torino, “La Matematica e le sue Applicazioni”n. 5-2009 (in print, Discr. Cont. Dynam. Systems).

[27] D. L. Russell Nonharmonic Fourier series in the control theory of distributed parameter systems J. Math. Anal. Appl. 1967 542 559

[28] D. L. Russell Controllability and stabilizability theory for linear partial differential equations SIAM Review 1978 639 739

[29] D. L. Russell On exponential bases for the Sobolev spaces over an interval J. Math.Anal.Appl. 1982 528 550

[30] W. Soedel. Vibrations of Shells and Plates. Marcel Dekker, Inc., New York, 1993.

[31] M. E. Taylor. Pseudodifferential Operators. Princeton University Press, Princeton, NJ, 1981.

[32] S. Timoshenko. Thèorie des Vibrations. Libr. Polytecnique Ch Bèranger, Paris, 1947.

[33] V. Z. Vlasov. ObŽcaya Teoriya Obolocek i eë Prilođeniya v Tehnike (in Russian) [General Theory of Shells and Its Applications in Technology]. Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticeskoi Literatury, Moscow-Leningrad (1949).

[34] X. Fu, J. Yong, X. Zhang Controllability and observability of the heat equation with hyperbolic memory kernel J. Diff. Equations 2009 2395 2439

Cité par Sources :