Pre-symptomatic Influenza Transmission, Surveillance, and School Closings: Implications for Novel Influenza A (H1N1)
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 191-205.

Voir la notice de l'article provenant de la source EDP Sciences

Early studies of the novel swine-origin 2009 influenza A (H1N1) epidemic indicate clinical attack rates in children much higher than in adults. Non-medical interventions such as school closings are constrained by their large socio-economic costs. Here we develop a mathematical model to ascertain the roles of pre-symptomatic influenza transmission as well as symptoms surveillance of children to assess the utility of school closures. Our model analysis indicates that school closings are advisable when pre-symptomatic transmission is significant or when removal of symptomatic children is inefficient. Our objective is to provide a rational basis for school closings decisions dependent on virulence characteristics and local surveillance implementation, applicable to the current epidemic and future epidemics.
DOI : 10.1051/mmnp/20105312

G. F. Webb 1 ; Y-H. Hsieh 2 ; J. Wu 3 ; M. J. Blaser 4

1 Department of Mathematics, Vanderbilt University, Nashville, Tennessee, 37240 USA
2 Department of Public Health and Center for Infectious Disease Epidemiology Research, China Medical University, Taichung, Taiwan
3 Laboratory for Industrial and Applied Mathematics, Centre for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, Canada M3J 1P3
4 Department of Medicine and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
@article{MMNP_2010_5_3_a12,
     author = {G. F. Webb and Y-H. Hsieh and J. Wu and M. J. Blaser},
     title = {Pre-symptomatic {Influenza} {Transmission,} {Surveillance,} and {School} {Closings:} {Implications} for {Novel} {Influenza} {A} {(H1N1)}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {191--205},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2010},
     doi = {10.1051/mmnp/20105312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105312/}
}
TY  - JOUR
AU  - G. F. Webb
AU  - Y-H. Hsieh
AU  - J. Wu
AU  - M. J. Blaser
TI  - Pre-symptomatic Influenza Transmission, Surveillance, and School Closings: Implications for Novel Influenza A (H1N1)
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 191
EP  - 205
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105312/
DO  - 10.1051/mmnp/20105312
LA  - en
ID  - MMNP_2010_5_3_a12
ER  - 
%0 Journal Article
%A G. F. Webb
%A Y-H. Hsieh
%A J. Wu
%A M. J. Blaser
%T Pre-symptomatic Influenza Transmission, Surveillance, and School Closings: Implications for Novel Influenza A (H1N1)
%J Mathematical modelling of natural phenomena
%D 2010
%P 191-205
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105312/
%R 10.1051/mmnp/20105312
%G en
%F MMNP_2010_5_3_a12
G. F. Webb; Y-H. Hsieh; J. Wu; M. J. Blaser. Pre-symptomatic Influenza Transmission, Surveillance, and School Closings: Implications for Novel Influenza A (H1N1). Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 191-205. doi : 10.1051/mmnp/20105312. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105312/

[1] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J. Wu Simple models for containment of a pandemic J. R. Soc. Interface 2006 453 457

[2] D.M. Bell World Health Organization Writing Group. Nonpharmaceutical interventions for pandemic influenza, international measures Emerg. Infect. Dis. 2008 1024 1030

[3] F. Brauer Age of infection in epidemiology models Elect. J. Dif. Eqs. 2005 29 37

[4] S. Cauchemez, A.J. Valleron, P.Y. Boelle, A. Flahault, N.M. Ferguson Estimating the impact of school closure on influenza transmission from sentinel data Nature 2008 750 754

[5] F. Carrat, E. Vergu, N.M. Feguson, M. Lemaitre, S. Cauchemez, S. Leach, A-J. Valleron Time Lines of Infection and Disease in Human Influenza: A Review of Volunteer Challenge Studies Am. J. Epid. 2008 775 785

[6] G. Chowell, C.E. Ammon, N.W. Hengartner, J.M. Hyman Estimation of the Reproductive number of the Spanish Flu Epidemic in Geneva, Switzerland Vaccine 2006 6747 6750

[7] B.J. Cowling, E.H.Y. Lau, C.L.H. Lam, C.K.Y. Cheng, J. Kovar, K.H. Chan, J.S. Malik Peiris, G.M. Leung Effects of school closures, 2008 winter influenza season, Hong Kong Emerg. Infect. Dis. 2006 81 87

[8] J. Dushoff, J.B. Plotkin, S. Levin, D.J.D. Earn Dynamical resonance can account for seasonality of influenza epidemics Proc. Natl. Acad. Sci. USA 2004 16915 16916

[9] A. Flahault, S. Letrait, P. Blin, S. Hazout, J. Menares, A.J. Valleron Modeling the 1985 influenza epidemic in France Stat. Med. 1988 1147 1155

[10] Z. Feng, W. Huang, C. Castillo-Chavez Global behavior of a multi-group SIS epidemic model with age structure J. Dif. Eq. 2005 292 324

[11] A. Flahault, S. Letrait, P. Blin, S. Hazout, J. Menares, A.J. Valleron Modeling the 1985 influenza epidemic in France Stat. Med. 1988 1147 1155

[12] A.L. Frank, L.H. Taber, C.R. Wells, J.M. Wells, W.P. Glezen, A. Paredes Patterns of shedding of myxoviruses and paramyxoviruses in children J. Infect. Dis. 1981 433 441

[13] C. Fraser, S. Riley, R.M. Anderson, N.M. Ferguson Factors that make an infectious disease outbreak controllable Proc. Natl. Acad. Sci. USA 2004 6146 6151

[14] C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D. VanKerkhove, T.D. Hollingsworth, J. Griffin, R.F. Baggaley, H.E. Jenkins, E.J. Lyons, T. Jombart, W.R. Hinsley, N.C. Grassly, F. Balloux, A.C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybus, H. Lopez-Gatell, C.M Alpuche-Aranda, L.B. Chapela, E.P. Zavala, D.M. Espejo Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth. Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings. Science, published online May 11, 2009.

[15] R. Gani, H. Hughes, D. Fleming, T. Griffin, J. Medlock, S. Leach Potential impact of antiviral drug use during influenza pandemic Emerg. Infect. Dis. 2005 1355 1362

[16] T.C. Germann, K. Kadau, I.M. Longini, C.A. Macken Mitigation strategies for pandemic influenza in the United States Proc. Natl. Acad. Sci. USA 2006 5935 5940

[17] J.M. Graat, E.G. Schouten, M.-L.A. Heijnen, F..J. Kok, E.G.M. Pallast, S.C. Degreeff, J.W. Dorigo-Zetsma A prospective, community-based study on virologic assessment among elderly people with and without symptoms of acute respiratory infection J. Clin. Epidemiol. 2003 1218 1223

[18] C.B. Hall, R.G. Douglas, J.M. Geiman, M.P Meagher Viral shedding patterns of children with influenza B infection J. Infect. Dis. 1979 610 613

[19] F.G. Hayden, R.Scott. Fritz, M.C. Lobo, W.G. Alvord, W. Strober, S.E. Straus Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense J. Clin. Invest. 1998 643 649

[20] H.W. Hethcote. A thousand and one epidemic models. Frontiers in Mathematical Biology, Lecture Notes in Biomathematics 100, S.A. Levin, ed., Springer-Verlag (1994), 504–515.

[21] L.M. Howe. Could the new swine virus be a Òherald waveÓ? Earthfiles.com Environment, published online. Accessed June 1, 2009.

[22] S.B. Hsu, Y.H. Hsieh On the Role of Asymptomatic Infection in Transmission Dynamics of Infectious Diseases Bull. Math. Biol. 2008 134 155

[23] H. Inaba, H. Nishiura The basic reproduction number of an infectious disease in a stable population: The impact of population growth rate on the eradication threshold Math. Model. Nat. Phen. 2008 194 228

[24] H. Inaba, H. Nishiura The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model Math. Biosci. 2008 77 89

[25] A.J. Johnson, Z.S. Moore, P.J. Edelson, L. Kinnane, M. Davies, D.K. Shay, A. Balish, M. Mccarron, L. Blanton, L. Finelli, F. Averhoff, J. Bresee, J. Engel, A. Fiore Household responses to school closure resulting from outbreak of influenza B, North Carolina. BNET: Health Care Industry Emerg. Infect. Dis. 2008 1024 1030

[26] W.O. Kermack, A.G. Mckendrick A contribution to the mathematical theory of epidemics Proc. Roy. Soc. London 1927 700 721

[27] J. Lessler, D.A. Cummings, S. Fishman, A. Vora, D.S. Burke Transmissibility of swine flu at Fort Dix, 1976 J. Roy. Soc. Interface 2007 55 762

[28] I.M. Longini, M.E. Halloran, A. Nizam, Y Yang Containing pandemic influenza with antiviral agents Am. J. Epidemiol. 2004 623 633

[29] I.M. Longini, A. Nizam, S. Xu, K. Ungschusak, W. Hanshaoworakul, D.A.T. Cummings, M.E. Halloran Containing pandemic influenza at the source Science 2005 1083 1087

[30] J.T. Macfarlane, W.S. Lim Bird flu and pandemic flu British Medical Journal. 2005 975 976

[31] C.E. Mills, J.M. Robins, M. Lipsitch Transmissibility of 1918 pandemic influenza Nature 2004 904 906

[32] G.J. Milne, J.K. Kelso, H.A. Kelly, S.T. Huband, J. Mcvernon A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic PLoSONE 2008

[33] S.M. Mniszewski, S.Y. Del Valle, P.D. Stroud, J.M. Riese, S.J. Sydoriak Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available Comp. & Math. Organ. Theory 2008 209 221

[34] A.S. Monto, R.A. Gunn, M.G. Bandyk, C.L. King Prevention of Russian influenza by amantadine JAMA 1979 1003 1007

[35] I. Nafta I, A.G. Turcanu, I. Braun, W. Companetz, A. Simionescu, E. Birt, V. Florea Administration of amantadine for the prevention of Hong Kong influenza Bull. World Health Organ. 1970 423 427

[36] W. Ndifon, J. Dushoff, S.A. Levin On the use of hemagglutination-inhibition for influenza surveillance: Surveillance data are predictive of influenza vaccine effectiveness Vaccine 2009 2447 2452

[37] H. Nishiura, C. Castillo-Chavez, M. Safan, G. Chowell. Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Eurosurveillance, 14 (2009), No. 22, Rapid Communications.

[38] N. Oker-Blom, T. Hovi, P. Leinikki, T. Palosuo, R. Pettersson, J. Suni Protection of man from natural infection with influenza A2 Hong Kong virus by amantadine: a controlled field trial Brit. Med. J. 1970 676 678

[39] R.F. Pettersson, P.-E. Hellstrom, K. Penttinen, R. Pyhala, O. Tokola, T. Vartio, R. Visakorpi Evaluation of amantadine in the prophylaxis of influenza A (H1N1) virus infection: a controlled field trial among young adults and high-risk patients J. Infect. Dis. 1980 377 383

[40] J.M. Quarles, R.B. Couch, T.R. Cate, C.B. Goswick Comparison of amantadine and rimantadine for prevention of type A (Russian) influenza Antiviral Res. 1981 149 155

[41] M.Z. Sadique, E.J. Adams, W.J. Edmunds Estimating the costs of school closure for mitigating an influenza pandemic BMC Public Health 2008

[42] N. Senpinar-Brunner, T. Eckert, K. Wyss Acceptance of public health measures by air travelers, Switzerland Emerg. Infect. Dis. 2009 831 832

[43] K. Sheat An investigation into an explosive outbreak of influenza-New Plymouth Communicable Disease New Zealand 1992 18 19

[44] M. Sato, M. Hosoya, K. Kato, H. Suzuki Viral shedding in children with influenza virus infections treated with neuraminidase inhibitors Pediatr. Infect. Dis. J. 2005 931 932

[45] N.I. Stilianakis, A.S. Perelson, F.G. Hayden Emergence of drug resistance during an influenza epidemic: insights from a mathematical model J. Infect. Dis. 1998 863 873

[46] World Health Organization. Nonpharmaceutical Interventions for Pandemic Influenza, International Measures. Emerg. Infect. Dis. 12 (2006), No 1, 81–87.

[47] G.F. Webb An age-dependent epidemic model with spatial diffusion Arch. Rat. Mech. 1980 91 102

Cité par Sources :