Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_3_a11, author = {Z. A. Wang}, title = {On {Chemotaxis} {Models} with {Cell} {Population} {Interactions}}, journal = {Mathematical modelling of natural phenomena}, pages = {173--190}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2010}, doi = {10.1051/mmnp/20105311}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/} }
TY - JOUR AU - Z. A. Wang TI - On Chemotaxis Models with Cell Population Interactions JO - Mathematical modelling of natural phenomena PY - 2010 SP - 173 EP - 190 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/ DO - 10.1051/mmnp/20105311 LA - en ID - MMNP_2010_5_3_a11 ER -
Z. A. Wang. On Chemotaxis Models with Cell Population Interactions. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 173-190. doi : 10.1051/mmnp/20105311. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/
[1] A stochastic keller-segel model of chemotaxis Commun. Nonlinear Sci Numer Simulat 2010 60 70
[2] Prevention of blow up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 2010 553 564
,[3] Cell-cell interactions Prokaryotes 2006 221 245
[4] M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.
[5] A users guide to PDE models for chemotaxis J. Math. Biol. 2009 183 217
,[6] Global existence for a parabolic chemotaxis model with prevention of overcrowding Adv. Appl. Math. 2001 280 301
,[7] Dictyostelium discoideum: cellular self-organisation in an excitable biological medium Proc. R. Soc. Lond. B. 1995 249 257
, ,[8] From 1970 until present: the keller-segel model in chemotaxis and its consequences: I Jahresber. Deutsch. Math.-Verein. 2003 103 165
[9] From 1970 until present: the keller-segel model in chemotaxis and its consequences: II Jahresber. Deutsch. Math.-Verein. 2004 51 69
[10] Initiation of slime mold aggregation viewd as an instability J. Theor. Biol. 1970 399 415
,[11] Global attractors for cross-diffusion systems on domains of arbitrary dimensions Rocky Mountain J. Math. 2007 1645 1668
,[12] A chemotaxis model with threshold density and degenerate diffusion In: Progress in Nonlinear Diffusion Equations and Their Application. 2005 273 290
,[13] Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact Phys. Rev. E. 2008
, ,[14] J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002.
[15] Nonlinear aspects of chemotaxis Math. Biosci. 1981 217 237
,[16] Preventing blow-up in a chemotaxis model J. Math. Anal. Appl. 2005 566 588
[17] The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion J. Theor. Biol. 1985 472 484
[18] Volume-filling and quorum-sensing in models for chemosensitive move- ment Can. Appl. Math. Quart. 2002 501 543
,[19] Modelling the movement of interacting cell populations J. Theor. Biol. 2003 327 339
,[20] B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007.
[21] Peter Pivonka.Personal communication. 2009.
[22] A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[23] Dynamical aspects of animal grouping: swarms, schools, flocks and herds Adv. Biophys. 1986 1 94
[24] N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.
[25] Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks SIAM J. Appl. Math. 1997 1044 1081
,[26] Classical solutions and pattern formation for a volume filling chemotaxis model Chaos. 2007
,[27] Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum Euro. J. Cell. Biol. 2006 897 904
,[28] Global attractor for a chemotaxis model with prevention of overcrowding Nonlinear Analysis. 2004 1293 1310
[29] Long time behavior of solutions to a chemotaxis model with volume filling effects Proc. R. Soc. Edinburgh A: Math. 2006 431 444
[30] D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:10.1016/j.na.2010.02.047, 2010.
Cité par Sources :