On Chemotaxis Models with Cell Population Interactions
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 173-190.

Voir la notice de l'article provenant de la source EDP Sciences

This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and the numerical pattern formations are shown. The further improvement is proposed in the end.
DOI : 10.1051/mmnp/20105311

Z. A. Wang 1

1 Department of Mathematics, University of Vanderbilt, Nashville, TN 37240
@article{MMNP_2010_5_3_a11,
     author = {Z. A. Wang},
     title = {On {Chemotaxis} {Models} with {Cell} {Population} {Interactions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {173--190},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2010},
     doi = {10.1051/mmnp/20105311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/}
}
TY  - JOUR
AU  - Z. A. Wang
TI  - On Chemotaxis Models with Cell Population Interactions
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 173
EP  - 190
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/
DO  - 10.1051/mmnp/20105311
LA  - en
ID  - MMNP_2010_5_3_a11
ER  - 
%0 Journal Article
%A Z. A. Wang
%T On Chemotaxis Models with Cell Population Interactions
%J Mathematical modelling of natural phenomena
%D 2010
%P 173-190
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/
%R 10.1051/mmnp/20105311
%G en
%F MMNP_2010_5_3_a11
Z. A. Wang. On Chemotaxis Models with Cell Population Interactions. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 173-190. doi : 10.1051/mmnp/20105311. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105311/

[1] P.H. Chavanis A stochastic keller-segel model of chemotaxis Commun. Nonlinear Sci Numer Simulat 2010 60 70

[2] Y.Z. Choi, Z.A. Wang Prevention of blow up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 2010 553 564

[3] D. Kaiser Cell-cell interactions Prokaryotes 2006 221 245

[4] M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.

[5] T. Hillen, K. Painter A users guide to PDE models for chemotaxis J. Math. Biol. 2009 183 217

[6] T. Hillen, K. Painter Global existence for a parabolic chemotaxis model with prevention of overcrowding Adv. Appl. Math. 2001 280 301

[7] T. Höfer, J.A. Sherratt, P.K. Maini Dictyostelium discoideum: cellular self-organisation in an excitable biological medium Proc. R. Soc. Lond. B. 1995 249 257

[8] D. Hortsmann From 1970 until present: the keller-segel model in chemotaxis and its consequences: I Jahresber. Deutsch. Math.-Verein. 2003 103 165

[9] D. Hortsmann From 1970 until present: the keller-segel model in chemotaxis and its consequences: II Jahresber. Deutsch. Math.-Verein. 2004 51 69

[10] E.F. Keller, L.A. Segel Initiation of slime mold aggregation viewd as an instability J. Theor. Biol. 1970 399 415

[11] H. Kuiper, L. Dung Global attractors for cross-diffusion systems on domains of arbitrary dimensions Rocky Mountain J. Math. 2007 1645 1668

[12] P. Laurençot, D. Wrzosek A chemotaxis model with threshold density and degenerate diffusion In: Progress in Nonlinear Diffusion Equations and Their Application. 2005 273 290

[13] P.M. Lushnikov, N. Chen, M. Alber Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact Phys. Rev. E. 2008

[14] J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002.

[15] S. Childress, J.K Percus Nonlinear aspects of chemotaxis Math. Biosci. 1981 217 237

[16] T. Kowalczyk Preventing blow-up in a chemotaxis model J. Math. Anal. Appl. 2005 566 588

[17] W.I. Neuman The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion J. Theor. Biol. 1985 472 484

[18] P. Painter, T. Hillen Volume-filling and quorum-sensing in models for chemosensitive move- ment Can. Appl. Math. Quart. 2002 501 543

[19] K. Painter, J. A. Sherratt Modelling the movement of interacting cell populations J. Theor. Biol. 2003 327 339

[20] B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007.

[21] Peter Pivonka.Personal communication. 2009.

[22] A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[23] A. Okubo Dynamical aspects of animal grouping: swarms, schools, flocks and herds Adv. Biophys. 1986 1 94

[24] N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.

[25] H.G. Othmer, A. Stevens Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks SIAM J. Appl. Math. 1997 1044 1081

[26] Z.A. Wang, T. Hillen Classical solutions and pattern formation for a volume filling chemotaxis model Chaos. 2007

[27] S.S. Willard, P.N. Devreotes Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum Euro. J. Cell. Biol. 2006 897 904

[28] D. Wrzosek Global attractor for a chemotaxis model with prevention of overcrowding Nonlinear Analysis. 2004 1293 1310

[29] D. Wrzosek Long time behavior of solutions to a chemotaxis model with volume filling effects Proc. R. Soc. Edinburgh A: Math. 2006 431 444

[30] D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:10.1016/j.na.2010.02.047, 2010.

Cité par Sources :