Optimal Control of a Cancer Cell Model with Delay
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 63-75.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we look at a model depicting the relationship of cancer cells in different development stages with immune cells and a cell cycle specific chemotherapy drug. The model includes a constant delay in the mitotic phase. By applying optimal control theory, we seek to minimize the cost associated with the chemotherapy drug and to minimize the number of tumor cells. Global existence of a solution has been shown for this model and existence of an optimal control has also been proven. Optimality conditions and characterization of the control are discussed.
DOI : 10.1051/mmnp/20105305

C. Collins 1 ; K.R. Fister 2 ; M. Williams 3

1 Department of Mathematics, University of Tennessee, Knoxville, TN 37996 USA
2 Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 USA
3 Department of Mathematics, University of Nebraska, Lincoln, NE 68588 USA
@article{MMNP_2010_5_3_a5,
     author = {C. Collins and K.R. Fister and M. Williams},
     title = {Optimal {Control} of a {Cancer} {Cell} {Model} with {Delay}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2010},
     doi = {10.1051/mmnp/20105305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/}
}
TY  - JOUR
AU  - C. Collins
AU  - K.R. Fister
AU  - M. Williams
TI  - Optimal Control of a Cancer Cell Model with Delay
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 63
EP  - 75
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/
DO  - 10.1051/mmnp/20105305
LA  - en
ID  - MMNP_2010_5_3_a5
ER  - 
%0 Journal Article
%A C. Collins
%A K.R. Fister
%A M. Williams
%T Optimal Control of a Cancer Cell Model with Delay
%J Mathematical modelling of natural phenomena
%D 2010
%P 63-75
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/
%R 10.1051/mmnp/20105305
%G en
%F MMNP_2010_5_3_a5
C. Collins; K.R. Fister; M. Williams. Optimal Control of a Cancer Cell Model with Delay. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 63-75. doi : 10.1051/mmnp/20105305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/

[1] I. Athanassios, D. Barbolosi Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model Comp. Biomedical Res. 2000 211 226

[2]

[3] P. C. Das, R. R. Sharma On optimal controls for measure delay-differential equations SIAM J. Control 1971 43 61

[4] L. G. De Pillis, K. R. Fister, W. Gu, T. Head, K. Maples, A. Murugan, T. Neal, K. Kozai Optimal control of mixed immunotherapy and chemotherapy of tumors Journal of Biological Systems 2008 51 80

[5] L.G. De Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore, B. Preskill Mathematical Model Creation for Cancer Chemo-Immunotherapy Computational and Mathematical Methods in Medicine 2009 165 184

[6] L. G. De Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore, B. Preskill Seeking Bang-Bang Solutions of Mixed Immuno-chemotherapy of tumors Electronic Journal of Differential Equations 2007 1 24

[7] R. D. Driver. Ordinary and Delay Differential Equations. Springer-Verlag, New York, 285–311, 1977.

[8] K. R. Fister, J. H. Donnelly Immunotherapy: An Optimal Control Theory Approach Mathematical Biosciences in Engineering 2005 499 510

[9] R. Fletcher. Practical methods of optimization. Wiley and Sons, New York, 1987.

[10] M. I. Kamien, N. L. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, Vol. 31 of Advanced Textbooks in Economics. North-Holland, 2nd edition, 1991.

[11] M. Kim, S. Perry, K. B. Woo Quantitative approach to the deisgn of antitumor drug dosage schedule via cell cycle kinetics and systems theory Ann. Biomed. Eng. 1977 12 33

[12] D. Kirschner, J. C. Panetta Modeling immunotherapy of the tumor-immune interaction Journal of Mathematical Biology 1998 235 252

[13] W. Liu, T. Hillen, H. I. Freedman A Mathematical model for M-phase specific chemotherapy including the Go-phase and immunoresponse Mathematical Biosciences and Engineering 2007 239 259

[14] D. McKenzie. Mathematical modeling and cancer. SIAM News, 31, Jan/Feb 2004.

[15] J. M. Murray Some optimality control problems in cancer chemotherapy with a toxicity limit Mathematical Biosciences 1990 49 67

[16] L. S. Pontryagin, V. G. Boltyanksii, R. V. Gamkrelidze, E. F. Mischchenko. The Mathematical theory of optimal processes. Wiley, New York, 1962.

[17] G. W. Swan, T. L. Vincent Optimal control analysis in the chemotherapy of IgG multiple myeloma Bulletin of Mathematical Biology 1977 317 337

[18] M. Villasana, A. Radunskaya A delay differential equation model for tumor growth Journal of Mathematical Biology 2003 270 294

Cité par Sources :