Voir la notice de l'article provenant de la source EDP Sciences
C. Collins 1 ; K.R. Fister 2 ; M. Williams 3
@article{10_1051_mmnp_20105305,
author = {C. Collins and K.R. Fister and M. Williams},
title = {Optimal {Control} of a {Cancer} {Cell} {Model} with {Delay}},
journal = {Mathematical modelling of natural phenomena},
pages = {63--75},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2010},
doi = {10.1051/mmnp/20105305},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/}
}
TY - JOUR AU - C. Collins AU - K.R. Fister AU - M. Williams TI - Optimal Control of a Cancer Cell Model with Delay JO - Mathematical modelling of natural phenomena PY - 2010 SP - 63 EP - 75 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/ DO - 10.1051/mmnp/20105305 LA - en ID - 10_1051_mmnp_20105305 ER -
%0 Journal Article %A C. Collins %A K.R. Fister %A M. Williams %T Optimal Control of a Cancer Cell Model with Delay %J Mathematical modelling of natural phenomena %D 2010 %P 63-75 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105305/ %R 10.1051/mmnp/20105305 %G en %F 10_1051_mmnp_20105305
C. Collins; K.R. Fister; M. Williams. Optimal Control of a Cancer Cell Model with Delay. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 63-75. doi: 10.1051/mmnp/20105305
[1] , Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model Comp. Biomedical Res. 2000 211 226
[2]
[3] , On optimal controls for measure delay-differential equations SIAM J. Control 1971 43 61
[4] , , , , , , , Optimal control of mixed immunotherapy and chemotherapy of tumors Journal of Biological Systems 2008 51 80
[5] , , , , , , , Mathematical Model Creation for Cancer Chemo-Immunotherapy Computational and Mathematical Methods in Medicine 2009 165 184
[6] , , , , , , , Seeking Bang-Bang Solutions of Mixed Immuno-chemotherapy of tumors Electronic Journal of Differential Equations 2007 1 24
[7] R. D. Driver. Ordinary and Delay Differential Equations. Springer-Verlag, New York, 285–311, 1977.
[8] , Immunotherapy: An Optimal Control Theory Approach Mathematical Biosciences in Engineering 2005 499 510
[9] R. Fletcher. Practical methods of optimization. Wiley and Sons, New York, 1987.
[10] M. I. Kamien, N. L. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, Vol. 31 of Advanced Textbooks in Economics. North-Holland, 2nd edition, 1991.
[11] , , Quantitative approach to the deisgn of antitumor drug dosage schedule via cell cycle kinetics and systems theory Ann. Biomed. Eng. 1977 12 33
[12] , Modeling immunotherapy of the tumor-immune interaction Journal of Mathematical Biology 1998 235 252
[13] , , A Mathematical model for M-phase specific chemotherapy including the Go-phase and immunoresponse Mathematical Biosciences and Engineering 2007 239 259
[14] D. McKenzie. Mathematical modeling and cancer. SIAM News, 31, Jan/Feb 2004.
[15] Some optimality control problems in cancer chemotherapy with a toxicity limit Mathematical Biosciences 1990 49 67
[16] L. S. Pontryagin, V. G. Boltyanksii, R. V. Gamkrelidze, E. F. Mischchenko. The Mathematical theory of optimal processes. Wiley, New York, 1962.
[17] , Optimal control analysis in the chemotherapy of IgG multiple myeloma Bulletin of Mathematical Biology 1977 317 337
[18] , A delay differential equation model for tumor growth Journal of Mathematical Biology 2003 270 294
Cité par Sources :