Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_2_a0, author = {John G. Milton}, title = {Quantitative {Neuroscience:} {From} {Chalk} {Board} to {Bedside}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--4}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2010}, doi = {10.1051/mmnp/20105299}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105299/} }
TY - JOUR AU - John G. Milton TI - Quantitative Neuroscience: From Chalk Board to Bedside JO - Mathematical modelling of natural phenomena PY - 2010 SP - 1 EP - 4 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105299/ DO - 10.1051/mmnp/20105299 LA - en ID - MMNP_2010_5_2_a0 ER -
John G. Milton. Quantitative Neuroscience: From Chalk Board to Bedside. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 1-4. doi : 10.1051/mmnp/20105299. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105299/
[1] Noise shaping in neural populations with global delayed feedback Math. Model. Nat. Phenom. 2010 100 124
,[2] Dynamics of stochastic neuronal networks and the connections to random graph theory Math. Model. Nat. Phenom. 2010 26 66
, ,[3] Observers for canonic models of coupled oscillators Math. Model. Nat. Phenom. 2010 146 184
, , ,[4] Silicon–neuron junction: Capacitive stimulation of an individual neuron on a silicon chip Phys. Rev. Lett. 1995 1670 1673
,[5] Analysis of synchronization in a neural population by a population density approach Math. Model. Nat. Phenom. 2010 5 25
, ,[6] The science of neural interface systems Annu. Rev. Neurosci. 2009 249 266
,[7] Turning thought into action New. Eng. J. Med. 2008 1175 1177
[8] Neural control of computer cursor velocity be decoding cortical spiking activity by humans with tetraplegia J. Neurol Engn. 2008 455 476
, , , ,[9] Targeted reinervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study Lancet 2007 371 380
, , , , , , ,[10] Patterns, memory and periodicity in two–neuron delayed recurrent inhibitory loops Math. Model. Nat. Phenom. 2010 67 99
,[11] J. Milton, P. Jung. Epilepsy as a dynamic disease. Springer, New York, 2003.
[12] J. Milton, J. Foss. Oscillations and multistability in delayed feedback control. In: Case Studies in Mathematical Modeling: Ecology, physiology and cell biology (H. G. Othmer, F. R. Adler, M. A. Lewis, J. C. Dallon, eds). Prentice Hall, Upper Saddle River, NJ, 1997, pp. 179–198.
[13] Indecision in neural decision making models Math. Model. Nat. Phenom. 2010 125 145
, , ,[14] Past, present and future of brain stimulation Math. Model. Nat. Phenom. 2010 185 207
, , , ,[15] Willful modulation of brain activity in disorders of consciousness New Eng. J. Med. 2010 579 589
, , , , , , ,[16] Real–time detection, quantification, warning, and control of epileptic seizures: The foundations for a scientific epileptology Epilepsy Behav. 2009 391 396
,[17] P. M. Pardalos, J. C. Sackellares, P. R. Carney, L. D. Iasemidis, eds. Quantitative Neuroscience: Models, algorithms, diagnostics and therapeutic applications. Kluwer Academic Publications, New York, 2004.
[18] The dynamic clamp: artificial conductances in biological neurons Trends Neurosci. 1993 389 394
, , ,[19] A versatile code for the definition of relations? Neuron 1999 49 65
[20] Environmental clamping of biological systems: Pupil servomechanism J. Opt. Soc. Amer. 1962 925 930
[21] P. A. Tass. Phase Resetting in Medicine and Biology: Stochastic modelling and data analysis. Springer Series in Synergetics, New York, 1999.
[22] Rhythmogenesis in a hybrid system interconnecting an olivary neuron to an analog network of coupled oscillators Neurosci. 1991 263 275
Cité par Sources :