Past, Present and Future of Brain Stimulation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 185-207.

Voir la notice de l'article provenant de la source EDP Sciences

Recent technological advances including brain imaging (higher resolution in space and time), miniaturization of integrated circuits (nanotechnologies), and acceleration of computation speed (Moore’s Law), combined with interpenetration between neuroscience, mathematics, and physics have led to the development of more biologically plausible computational models and novel therapeutic strategies. Today, mathematical models of irreversible medical conditions such as Parkinson’s disease (PD) are developed and parameterised based on clinical data. How do these evolutions have a bearing on deep brain stimulation (DBS) of patients with PD? We review how the idea of DBS, a standard therapeutic strategy used to attenuate neurological symptoms (motor, psychiatric), has emerged from past experimental and clinical observations, and present how, over the last decade, computational models based on different approaches (phase oscillator models, spiking neuron network models, population-based models) have started to shed light onto DBS mechanisms. Finally, we explore a new mathematical modelling approach based on neural field equations to optimize mechanisms of brain stimulation and achieve finer control of targeted neuronal populations. We conclude that neuroscience and mathematics are crucial partners in exploring brain stimulation and this partnership should also include other domains such as signal processing, control theory and ethics.
DOI : 10.1051/mmnp/20105207

J. Modolo 1, 2 ; R. Edwards 3 ; J. Campagnaud 2 ; B. Bhattacharya 2 ; A. Beuter 2

1 Lawson Health Research Institute, Department of Medical Biophysics University of Western Ontario, N6A 4V2 London, ON Canada
2 Laboratoire IMS, Site ENSCPB, Institut Polytechnique de Bordeaux 16 avenue Pey-Berland, 33607 Pessac, France
3 Department of Mathematics and Statistics, University of Victoria V8W 3R4 Victoria, B.C. Canada
@article{MMNP_2010_5_2_a7,
     author = {J. Modolo and R. Edwards and J. Campagnaud and B. Bhattacharya and A. Beuter},
     title = {Past, {Present} and {Future} of {Brain} {Stimulation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {185--207},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105207/}
}
TY  - JOUR
AU  - J. Modolo
AU  - R. Edwards
AU  - J. Campagnaud
AU  - B. Bhattacharya
AU  - A. Beuter
TI  - Past, Present and Future of Brain Stimulation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 185
EP  - 207
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105207/
DO  - 10.1051/mmnp/20105207
LA  - en
ID  - MMNP_2010_5_2_a7
ER  - 
%0 Journal Article
%A J. Modolo
%A R. Edwards
%A J. Campagnaud
%A B. Bhattacharya
%A A. Beuter
%T Past, Present and Future of Brain Stimulation
%J Mathematical modelling of natural phenomena
%D 2010
%P 185-207
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105207/
%R 10.1051/mmnp/20105207
%G en
%F MMNP_2010_5_2_a7
J. Modolo; R. Edwards; J. Campagnaud; B. Bhattacharya; A. Beuter. Past, Present and Future of Brain Stimulation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 185-207. doi : 10.1051/mmnp/20105207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105207/

[1] C. Ajmone Marsan. Focal electrical stimulation. In: Experimental Models of Epilepsy: A manual for the laboratory worker. Eds D. P. Purpura, J. K. Penry, D. Tower, D. M. Woodbury and R. Walter, Raven Press, New York, 1972.

[2] S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields Biol. Cybern. 1977 77 87

[3] F. Atay, A. Hutt Stability and bifurcations in neural fields with finite propagation speed and general connectivity SIAM J. Appl. Math. 2005 644 666

[4] U. B. Barnikol, O. V. Popovych, C. Hauptmann, V. Sturm, H. J. Freund, P. A. Tass Tremor entrainment by patterned low-frequency stimulation Philos. Transact. A Math. Phys. Eng. Sci. 2008 3543 3573

[5] R. Bartolow Experimental investigations into the functions of the human brain AM. J. Med. Sci. 1874 305 313

[6] N. P. Bechtereva, A. N. Bondarchuk, V. M. Smirnov Therapeutic electrostimulations of deep brain structures Vopr Neirokhir 1972 115 120

[7] A. L. Benabid, P. Pollak, A. Louveau, S. Henry, J. De Rougemont Combined (thalamotomy and stimulation) stereotactic surgery of the Vim thalamic nucleus for bilateral Parkinson disease Appl. Neurophysiol. 1987 344 346

[8] A. L. Benabid, W. Bradley, J. Mitrofanis, C. Xia, B. Piallat, V. Fraix, A. Batir, P. Krack, P. Pollak, F. Berger Therapeutic electrical stimulation of the central nervous system C. R. Biologies 2005 177 186

[9] S. A. Chkhenkeli. Direct deep brain stimulation: first steps toward the feedback control of seizures. In: Epilepsy as a dynamical disease, p. 249-262. Eds J. Milton and P. Jung, Springer-Verlag, New York, 2003.

[10] J. Echauz, H. Firpi, G. Georgoulas. Intelligent control strategies for neurostimulation. In: Applications of intelligent control of engineering systems. Ed P. K. Valavanis, Springer, 2009.

[11] R. Edwards Approximation of neural network dynamics by reaction-diffusion equations Math. Meth. App. Sci. 1996 651 677

[12] G. B. Ermentrout, J. D. Cowan A mathematical theory of visual hallucination patterns Biol. Cybern. 1979 137 150

[13] A. Eusebio, A. Pogosyan, S. Wang, B. Averbeck, L. D. Gaynor, S. Cantiniaux, T. Witjas, P. Limousin, J. P. Azulay, P. Brown Resonance in subthalamo-cortical circuits in Parkinson’s disease Brain 2009 2139 2150

[14] W. Gerstner, R. Kempter, J. L. Van Hemmen, H. Wagner A neuronal learning rule for sub-millisecond temporal coding Nature 1996 76 81

[15] F. A. Gibbs, E. L. Gibbs, W. G. Lennox The likeness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy Am. J. Psychiatry 1938 255 269

[16] P. L. Gildenberg History of electrical neuromodulation for chronic pain Pain Medicine 2006 S7 S13

[17] B. J. Gluckman, E. J. Neel, T. I. Neto, W. L. Ditto, M. L. Spano, S. J. Schiff Electric field suppression of epileptiform activity in hippocampal slices J. Neurophysiol. 1996 4202 4205

[18] B. J. Gluckman, Nguyen, S. L. Weinstein, S. J. Schiff Adaptive electric field control of epileptic seizures J. Neurosci. 2001 290 600

[19] S. Grillner, A. Kozlov, J. H. Kotaleski Integrative neuroscience: linking levels of analyses Curr. Opin. Neurobiol. 2005 614 621

[20] R. Hassler, F. Mundiger, T. Riechert Correlations between clinical and autoptic findings in stereotaxic operations in parkinsonism Confin. Neurol. 1965 282 290

[21] A. L. Hodgkin, A. F. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544

[22] J. C. Horton, D. L. Adams The cortical column: a structure without a function Phil. Trans. of the Royal Soc. B 2005 837 862

[23] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff, J. Y. Wu Spiral waves in disinhibited mammalian neocortex J. Neurosci. 2004 9897 9902

[24] E. M. Izhikevich Simple model of spiking neurons Transactions on Neural Networks 2003 1569 1572

[25] E. M. Izhikevich Polychronization: computation with spikes Neural Computation 2006 245 282

[26] H. H. Jasper Recording from microelectrodes in stereotactic surgery for Parkinson’s disease J. Neurosurg. 1966 219 221

[27] E. I. Kandel. Functional and stereotactic neurosurgery. Plenum Medical Book Co, New York, 1966.

[28] R. R. Llinas, U. Ribary, D. Jeanmonod, E. Kronberg, P. P. Mitra Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography Proc. Natl. Acad. Sci. USA 1999 15222 15227

[29] H. O. Lüders. Deep brain stimulation and epilepsy. Martin Dunitz, New York, 2004.

[30] C. C. Mcintyre, S. Mori, D. L. Sherman, N. V. Thakor, J. L. Vitek Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus Clin. Neurophysiol. 2004 589 595

[31] W. Meissner, A. Leblois, D. Hansel, B. Bioulac, C. E. Gross, A. Benazzouz, T. Boraud Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations Brain 2005 2372 2382

[32] JMilton, P. Jung. Epilepsy as a dynamical disease. Springer-Verlag, New York, 2003.

[33] J. Modolo, J. Henry, A. Beuter Dynamics of the subthalamo-pallidal complex in Parkinson’s disease during deep brain stimulation J. Biol. Phys. 2008 351 366

[34] J. Modolo, A. Beuter. Contribution of cortical inputs to subthalamic activity during deep brain stimulation. Proceedings of the Neurocomp 2008 conference, Marseille, France (2008).

[35] J. Modolo, A. Beuter Linking brain dynamics, neural mechanisms and deep brain stimulation in Parkinson’s disease: an integrated perspective Med. Eng. Phys. 2009 615 623

[36] D. Q. Nykamp, D. Tranchina A population density approach that facilitates largescale modeling of neural networks : analysis and an application to orientation tuning J. Comput. Neurosci. 2000 19 50

[37] J. Olszewski. The thalamus of the Macaca Mulatta. An atlas for use with the stereotactic instrument. Basel Karger, 1952.

[38] A. Omurtag, B. Knight, L. Sirovich On the simulation of large populations of neurons J. Comput. Neurosci. 2000 51 63

[39] A. Pascual, J. Modolo, A. Beuter Is a computational model useful to understand the effect of deep brain stimulation in Parkinson’s disease? J. Integr. Neurosci. 2006 541 559

[40] J. Richmond The 3Rs-Past, present and future Scand. J. Lab. Anim. Sci. 2000 84 92

[41] J. E. Rubin, D. Terman High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model J. Comput. Neurosci. 2004 211 235

[42] D. Rubino, K. A. Robbins, N. G. Hatsopoulos Propagating waves mediate information transfer in the motor cortex Nature Neurosci. 2006 1549 1557

[43] J. D. Speelman, D. A. Bosch Resurgence of functional neurosurgery for Parkinson’s disease: a historical perspective Mov. Disord. 1998 582 588

[44] E. A. Spiegel, H. T. Wycis, M. Marks, A. S. Lee Stereotaxic apparatus for operations on the human brain Science 1947 349 350

[45] A. A. Spiegel, H. T. Wycis. Stereoencephalotomy (thalamic related procedures) part 1: Methods and atlas for the human brain. Grune and Stratton, New York, 1952.

[46] P. A. Tass. Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis. Series: Springer Series in Synergetics, 1999.

[47] D. Terman, J. E. Rubin, A. C. Yew, C. J. Wilson Activity patterns in a model for the subthalamopallidal network of the basal ganglia J. Neurosci. 2002 2963 2976

[48] L. Timmermann, J. Gross, M. Dirks, J. Volkmann, H. J. Freund, A. Schnitzler The cerebral oscillatory network of parkinsonian resting tremor Brain 2003 199 212

[49] L. Timmermann, E. Florin, C. Reck Pathological cerebral oscillatory activity in Parkinson’s disease: a critical review on methods, data and hypotheses Expert Rev. Med. Dev. 2007 651 61

[50] M. S. Titcombe, L. Glass, D. Guehl, A. Beuter Dynamics of Parkinsonian tremor during deep brain stimulation Chaos 2001 766 773

[51] J. L. P. Velazquez Brain, behaviour and mathematics: Are we using the right approaches? Physica D 2005 161 182

[52] J. A. Vilensky, S. Gilman Horsley was the first to use electrical stimulation of the human cerebral cortex intraoperatively Surg. Neurol. 2002 425 426

[53] H. R. Wilson, J. D. Cowan A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue Kybernetik 1973 55 80

[54] T. Wichmann, M. R. Delong Deep brain stimulation for neurologic and neuropsychiatric disorders Neuron 2006 197 204

[55] A. Winfree. Are cardiac waves relevant to epileptic waves propagation? In: Epilepsy as a dynamical disease, p. 165-188. Eds J. Milton and P. Jung, Springer-Verlag, New York, 2003.

[56] J. S. Yeomans. Principles of Brain Stimulation. Oxford University Press, New York, 1990.

Cité par Sources :