Observers for Canonic Models of Neural Oscillators
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 146-184.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the problem of state and parameter estimation for a class of nonlinear oscillators defined as a system of coupled nonlinear ordinary differential equations. Observable variables are limited to a few components of state vector and an input signal. This class of systems describes a set of canonic models governing the dynamics of evoked potential in neural membranes, including Hodgkin-Huxley, Hindmarsh-Rose, FitzHugh-Nagumo, and Morris-Lecar models. We consider the problem of state and parameter reconstruction for these models within the classical framework of observer design. This framework offers computationally-efficient solutions to the problem of state and parameter reconstruction of a system of nonlinear differential equations, provided that these equations are in the so-called adaptive observer canonic form. We show that despite typical neural oscillators being locally observable they are not in the adaptive canonic observer form. Furthermore, we show that no parameter-independent diffeomorphism exists such that the original equations of these models can be transformed into the adaptive canonic observer form. We demonstrate, however, that for the class of Hindmarsh-Rose and FitzHugh-Nagumo models, parameter-dependent coordinate transformations can be used to render these systems into the adaptive observer canonical form. This allows reconstruction, at least partially and up to a (bi)linear transformation, of unknown state and parameter values with exponential rate of convergence. In order to avoid the problem of only partial reconstruction and at the same time to be able to deal with more general nonlinear models in which the unknown parameters enter the system nonlinearly, we present a new method for state and parameter reconstruction for these systems. The method combines advantages of standard Lyapunov-based design with more flexible design and analysis techniques based on the notions of positive invariance and small-gain theorems. We show that this flexibility allows to overcome ill-conditioning and non-uniqueness issues arising in this problem. Effectiveness of our method is illustrated with simple numerical examples.
DOI : 10.1051/mmnp/20105206

D. Fairhurst 1 ; I. Tyukin 1, 2, 3 ; H. Nijmeijer 4 ; C. van Leeuwen 2

1 Department of Mathematics, University of Leicester, University Road, LE1 7RH, UK
2 RIKEN (Institute for Physical and Chemical Research) Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
3 Deptartment of Automation and Control Processes, St-Petersburg State University of Electrical Engineering, Prof. Popova str. 5, 197376, Russia
4 Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513 , 5600 MB, Eindhoven, The Netherlands
@article{MMNP_2010_5_2_a6,
     author = {D. Fairhurst and I. Tyukin and H. Nijmeijer and C. van Leeuwen},
     title = {Observers for {Canonic} {Models} of {Neural} {Oscillators}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {146--184},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/}
}
TY  - JOUR
AU  - D. Fairhurst
AU  - I. Tyukin
AU  - H. Nijmeijer
AU  - C. van Leeuwen
TI  - Observers for Canonic Models of Neural Oscillators
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 146
EP  - 184
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/
DO  - 10.1051/mmnp/20105206
LA  - en
ID  - MMNP_2010_5_2_a6
ER  - 
%0 Journal Article
%A D. Fairhurst
%A I. Tyukin
%A H. Nijmeijer
%A C. van Leeuwen
%T Observers for Canonic Models of Neural Oscillators
%J Mathematical modelling of natural phenomena
%D 2010
%P 146-184
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/
%R 10.1051/mmnp/20105206
%G en
%F MMNP_2010_5_2_a6
D. Fairhurst; I. Tyukin; H. Nijmeijer; C. van Leeuwen. Observers for Canonic Models of Neural Oscillators. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 146-184. doi : 10.1051/mmnp/20105206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/

[1] H.D.I. Abarbanel, D.R. Crevling, R. Farsian, M. Kostuk Dynamical State and Parameter Estimation SIAM J. Applied Dynamical Systems 2009 1341 1381

[2] P. Achard, E. Schutter Complex parameter landscape for a comples neuron model PLOS Computational Biology 2006 794 804

[3] G. Bastin, M. Gevers Stable adaptive observers for nonlinear time-varying systems IEEE Trans. on Automatic Control 1988 650 658

[4] R. Borisyuk, Y. Kazanovich Oscillations and waves in the models of interactive neural populations Biosystems 2006 53 62

[5] D. Brewer, M. Barenco, R. Callard, M. Hubank, J. Stark Fitting ordinary differential equations to short time course data Philosophical Transactions of The Royal Society A 2008 519 544

[6] C. Cao, A.M. Annaswamy, A. Kojic Parameter convergence in nonlinearly parametrized systems IEEE Trans. on Automatic Control 2003 397 411

[7] R. Fitzhugh Impulses and physiological states in theoretical models of nerve membrane Biophysical Journal 1961 445 466

[8] A.N. Gorban. Basic types of coarse-graining. In A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Ottinger, and C. Theodoropoulos, editors. Model Reduction and Coarse–Graining Approaches for Multiscale Phenomena, Springer, (2006), 117–176.

[9] J.L. Hindmarsh, R.M. Rose A model of neuronal bursting using three coupled first order differential equations Proc. R. Soc. Lond. 1984 87 102

[10] A.L. Hodgkin, A.F. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544

[11] A. Ilchman Universal adaptive stabilization of nonlinear systems Dyn. and Contr. 1997 213

[12] A. Isidori.Nonlinear control systems II.Springer–Verlag, second edition, 1999.

[13] E. M. Izhikevich. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, 2007.

[14] E. M. Izhikevich, G. M. Edelman Large-scale model of mammalian thalamocortical systems Proc. of Nat. Acad. Sci. 2008 3593 3598

[15] Y. Kazanovich, R. Borisyuk An oscillatory neural model of multiple object tracking Neural Computation 2006 1413 1440

[16] C. Koch. Biophysics of Computation. Information Processing in Signle Neurons. Oxford University Press, 2002.

[17] G. Kreisselmeier Adaptive obsevers with exponential rate of convergence IEEE Trans. Automatic Control 1977 2 8

[18] W. Lin, C. Qian Adaptive control of nonlinearly parameterized systems: The smooth feedback case IEEE Trans. Automatic Control 2002 1249 1266

[19] L. Ljung. System Identification: Theory for the User. Prentice-Hall, 1999.

[20] L. Ljung. Perspectives in system identification. In Proceedings of the 17-th IFAC World Congress on Automatic Control, (2008), 7172–7184.

[21] A. Loria, E. Panteley Uniform exponential stability of linear time-varying systems: revisited Systems and Control Letters 2007 13 24

[22] A.M. Lyapunov The general problem of the stability of motion Int. Journal of Control 1992

[23] R. Marino Adaptive observers for single output nonlinear systems IEEE Trans. Automatic Control 1990 1054 1058

[24] R. Marino, P. Tomei Global adaptive observers for nonlinear systems via filtered transformations IEEE Trans. Automatic Control 1992 1239 1245

[25] R. Marino, P. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems IEEE Trans. Automatic Control 1995 1300 1304

[26] J. Milnor On the concept of attractor Commun. Math. Phys. 1985 177 195

[27] A. P. Morgan, K. S. Narendra On the stability of nonautonomous differential equations $\dot{x} SIAM J. Control and Optimization 1977 1343 1354

[28] C. Morris, H. Lecar Voltage oscillatins in the barnacle giant muscle fiber Biophysics J. 1981 193 213

[29] K. S. Narendra, A. M. Annaswamy. Stable Adaptive systems. Prentice–Hall, 1989.

[30] H. Nijmeijer, A. van der Schaft. Nonlinear Dynamical Control Systems. Springer–Verlag, 1990.

[31] A. Prinz, C.P. Billimoria, E. Marder Alternative to hand-tuning conductance-based models: Contruction and analysis of databases of model neurons Journal of Neorophysiology 2003 3998 4015

[32] I. Yu. Tyukin, D.V. Prokhorov, C. van Leeuwen. Adaptive algorithms in finite form for nonconvex parameterized systems with low-triangular structure. In Proceedings of the 8-th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2004), (2004), 261–266.

[33] I.Yu. Tyukin, D. V. Prokhorov, C. Van Leeuwen Adaptation and parameter estimation in systems with unstable target dynamics and nonlinear parametrization IEEE Transactions on Automatic Control 2007 1543 1559

[34] I.Yu. Tyukin, D.V. Prokhorov, V.A. Terekhov Adaptive control with nonconvex parameterization IEEE Trans. on Automatic Control 2003 554 567

[35] I.Yu. Tyukin, E. Steur, H. Nijmeijer, C. Van Leeuwen Non-uniform small-gain theorems for systems with unstable invariant sets SIAM Journal on Control and Optimization 2008 849 882

[36] I.Yu. Tyukin, E. Steur, H. Nijmeijer, C. van Leeuwen. Adaptive observers and parametric identification for systems in non-canonical adaptive observer form. (2009), preprint available at http://arxiv.org/abs/0903.2361.

[37] W. Van Geit, E. De Shutter, P. Achard Automated neuron model optimization techniques: a review Biol. Cybern 2008 241 251

[38] V.B. Kazantsev, V.I. Nekorkin, V.I. Makarenko, R. Self-referential phase reset based on inferior olive oscillator dynamics Proceedings of National Academy of Science 2004 18183 18188

Cité par Sources :