Voir la notice de l'article provenant de la source EDP Sciences
D. Fairhurst 1 ; I. Tyukin 1, 2, 3 ; H. Nijmeijer 4 ; C. van Leeuwen 2
@article{MMNP_2010_5_2_a6, author = {D. Fairhurst and I. Tyukin and H. Nijmeijer and C. van Leeuwen}, title = {Observers for {Canonic} {Models} of {Neural} {Oscillators}}, journal = {Mathematical modelling of natural phenomena}, pages = {146--184}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2010}, doi = {10.1051/mmnp/20105206}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/} }
TY - JOUR AU - D. Fairhurst AU - I. Tyukin AU - H. Nijmeijer AU - C. van Leeuwen TI - Observers for Canonic Models of Neural Oscillators JO - Mathematical modelling of natural phenomena PY - 2010 SP - 146 EP - 184 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/ DO - 10.1051/mmnp/20105206 LA - en ID - MMNP_2010_5_2_a6 ER -
%0 Journal Article %A D. Fairhurst %A I. Tyukin %A H. Nijmeijer %A C. van Leeuwen %T Observers for Canonic Models of Neural Oscillators %J Mathematical modelling of natural phenomena %D 2010 %P 146-184 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/ %R 10.1051/mmnp/20105206 %G en %F MMNP_2010_5_2_a6
D. Fairhurst; I. Tyukin; H. Nijmeijer; C. van Leeuwen. Observers for Canonic Models of Neural Oscillators. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 146-184. doi : 10.1051/mmnp/20105206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105206/
[1] Dynamical State and Parameter Estimation SIAM J. Applied Dynamical Systems 2009 1341 1381
, , ,[2] Complex parameter landscape for a comples neuron model PLOS Computational Biology 2006 794 804
,[3] Stable adaptive observers for nonlinear time-varying systems IEEE Trans. on Automatic Control 1988 650 658
,[4] Oscillations and waves in the models of interactive neural populations Biosystems 2006 53 62
,[5] Fitting ordinary differential equations to short time course data Philosophical Transactions of The Royal Society A 2008 519 544
, , , ,[6] Parameter convergence in nonlinearly parametrized systems IEEE Trans. on Automatic Control 2003 397 411
, ,[7] Impulses and physiological states in theoretical models of nerve membrane Biophysical Journal 1961 445 466
[8] A.N. Gorban. Basic types of coarse-graining. In A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Ottinger, and C. Theodoropoulos, editors. Model Reduction and Coarse–Graining Approaches for Multiscale Phenomena, Springer, (2006), 117–176.
[9] A model of neuronal bursting using three coupled first order differential equations Proc. R. Soc. Lond. 1984 87 102
,[10] A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
,[11] Universal adaptive stabilization of nonlinear systems Dyn. and Contr. 1997 213
[12] A. Isidori.Nonlinear control systems II.Springer–Verlag, second edition, 1999.
[13] E. M. Izhikevich. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, 2007.
[14] Large-scale model of mammalian thalamocortical systems Proc. of Nat. Acad. Sci. 2008 3593 3598
,[15] An oscillatory neural model of multiple object tracking Neural Computation 2006 1413 1440
,[16] C. Koch. Biophysics of Computation. Information Processing in Signle Neurons. Oxford University Press, 2002.
[17] Adaptive obsevers with exponential rate of convergence IEEE Trans. Automatic Control 1977 2 8
[18] Adaptive control of nonlinearly parameterized systems: The smooth feedback case IEEE Trans. Automatic Control 2002 1249 1266
,[19] L. Ljung. System Identification: Theory for the User. Prentice-Hall, 1999.
[20] L. Ljung. Perspectives in system identification. In Proceedings of the 17-th IFAC World Congress on Automatic Control, (2008), 7172–7184.
[21] Uniform exponential stability of linear time-varying systems: revisited Systems and Control Letters 2007 13 24
,[22] The general problem of the stability of motion Int. Journal of Control 1992
[23] Adaptive observers for single output nonlinear systems IEEE Trans. Automatic Control 1990 1054 1058
[24] Global adaptive observers for nonlinear systems via filtered transformations IEEE Trans. Automatic Control 1992 1239 1245
,[25] Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems IEEE Trans. Automatic Control 1995 1300 1304
,[26] On the concept of attractor Commun. Math. Phys. 1985 177 195
[27] On the stability of nonautonomous differential equations $\dot{x} SIAM J. Control and Optimization 1977 1343 1354
,[28] Voltage oscillatins in the barnacle giant muscle fiber Biophysics J. 1981 193 213
,[29] K. S. Narendra, A. M. Annaswamy. Stable Adaptive systems. Prentice–Hall, 1989.
[30] H. Nijmeijer, A. van der Schaft. Nonlinear Dynamical Control Systems. Springer–Verlag, 1990.
[31] Alternative to hand-tuning conductance-based models: Contruction and analysis of databases of model neurons Journal of Neorophysiology 2003 3998 4015
, ,[32] I. Yu. Tyukin, D.V. Prokhorov, C. van Leeuwen. Adaptive algorithms in finite form for nonconvex parameterized systems with low-triangular structure. In Proceedings of the 8-th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2004), (2004), 261–266.
[33] Adaptation and parameter estimation in systems with unstable target dynamics and nonlinear parametrization IEEE Transactions on Automatic Control 2007 1543 1559
, ,[34] Adaptive control with nonconvex parameterization IEEE Trans. on Automatic Control 2003 554 567
, ,[35] Non-uniform small-gain theorems for systems with unstable invariant sets SIAM Journal on Control and Optimization 2008 849 882
, , ,[36] I.Yu. Tyukin, E. Steur, H. Nijmeijer, C. van Leeuwen. Adaptive observers and parametric identification for systems in non-canonical adaptive observer form. (2009), preprint available at http://arxiv.org/abs/0903.2361.
[37] Automated neuron model optimization techniques: a review Biol. Cybern 2008 241 251
, ,[38] Self-referential phase reset based on inferior olive oscillator dynamics Proceedings of National Academy of Science 2004 18183 18188
, , ,Cité par Sources :