Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 67-99.

Voir la notice de l'article provenant de la source EDP Sciences

We study the coexistence of multiple periodic solutions for an analogue of the integrate-and-fire neuron model of two-neuron recurrent inhibitory loops with delayed feedback, which incorporates the firing process and absolute refractory period. Upon receiving an excitatory signal from the excitatory neuron, the inhibitory neuron emits a spike with a pattern-related delay, in addition to the synaptic delay. We present a theoretical framework to view the inhibitory signal from the inhibitory neuron as a self-feedback of the excitatory neuron with this additional delay. Our analysis shows that the inhibitory feedbacks with firing and the absolute refractory period can generate four basic types of oscillations, and the complicated interaction among these basic oscillations leads to a large class of periodic patterns and the occurrence of multistability in the recurrent inhibitory loop. We also introduce the average time of convergence to a periodic pattern to determine which periodic patterns have the potential to be used for neural information transmission and cognition processing in the nervous system.
DOI : 10.1051/mmnp/20105203

J. Ma 1 ; J. Wu 2

1 Department of Mathematics, University of Houston, Houston TX 77204-3008, USA
2 Center for Disease Modeling; Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada
@article{MMNP_2010_5_2_a3,
     author = {J. Ma and J. Wu},
     title = {Patterns, {Memory} and {Periodicity} in {Two-Neuron} {Delayed} {Recurrent} {Inhibitory} {Loops}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {67--99},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105203/}
}
TY  - JOUR
AU  - J. Ma
AU  - J. Wu
TI  - Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 67
EP  - 99
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105203/
DO  - 10.1051/mmnp/20105203
LA  - en
ID  - MMNP_2010_5_2_a3
ER  - 
%0 Journal Article
%A J. Ma
%A J. Wu
%T Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops
%J Mathematical modelling of natural phenomena
%D 2010
%P 67-99
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105203/
%R 10.1051/mmnp/20105203
%G en
%F MMNP_2010_5_2_a3
J. Ma; J. Wu. Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 67-99. doi : 10.1051/mmnp/20105203. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105203/

[1] C. A. Bares, M. S. Suster, J. Shen, B. L. Mcnaughton Multistability of cognitive maps in the hippocampus of old rats Nature 272 275 1997

[2] A. Beuter, J. G. Milton, C. Labrie, L. Glass Complex motor dynamics and control in multi-loop negative feedback systems Proc IEEE Systems Man Cybern 899 902 1989

[3] R. M. Borisyuk, A. Kirillov Bifurcation analysis of a neural network model Biological Cybernetics 319 325 1992

[4] C. Canavier, D. Baxter, J. Clark, J. Byrne Multiple modes of activity in a neuron model suggest a novel mechanism for the effects of neuromodulators J. Neurophysiol. 872 882 1994

[5] C. C. Chow, J. A. White, J. Ritt, N. Kopell Frequency control in synchronized networks of inhibitory neurons Neural Comput. 407 420 1998

[6] D. Cotreras, A. Destexhe, T. J. Sejnowski, M. Steraide Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback Science 771 774 1996

[7] G. B. Ermentrout, N. Kopell Fine structure of neural spiking and synchronization in the presence of conduction delays Proc. Nat. Acad. Sci. 1259 1264 1998

[8] J. Foss, A. Longtin, B. Mensour, J. Milton Multistability and delayed recurrent loops Phys. Rev. Lett. 708 711 1996

[9] J. Foss, F. Moss, J. Milton Noise, multistability, and delayed recurrent loops Phys. Rev. E 4536 4543 1997

[10] J. Foss, J. Milton Multistability in recurrent neural loops arising from delay J. Neurophysiol. 975 985 2000

[11] M. J. Gutnick, D. A. Prince Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus Science 424 426 1972

[12] A. C. Guyton. Textbook of medical physiology. Saunders, Toronto, 1976.

[13] J. J. Hopfield Neural networks and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci. 2554 2558 1982

[14] J. J. Hopfield Neurons with grades response have collective computational properties like those of two-state neurons Proc. Natl. Acad. Sci. 3088 3092 1984

[15] N. Kopell, G. B. Ermentrout, M. A. Whittington, R. D. Traub Gamma rhythms and beta rhythms have different synchronization properties PNAS 1867 1872 2000

[16] N. Kopell, D. Pervouchine, H. G. Rotstein, T. Netoff, M. Whittington, T. Gloveli. Multiple rhythms and switches in the nervous system. In press.

[17] J. Ma, J. Wu Multistability in spiking neuron models of delayed recurrent neural loops Neural Comput. 2124 2148 2007

[18] J. Ma, J. Wu. Transition and coexistence of periodic patterns in spiking neuron models of delayed recurrent inhibitory loops. Submitted to SIAM J. Appl. Math..

[19] J. Milller. What is the contribution of axonal conduction delay to temporal structure in brain dynamics? 53–57. In: Oscillatory event-related brain dynamics. C. Pantev, Ed. Plenum, New York, 1994.

[20] J. Milton. Epilepsy: Multistability in a dynamic disease. In: Self-organized biological dynamics and nonlinear control. J. Walleczek, Ed. Cambridge University Press, Cambridge, 374-386, 2000.

[21] J. Milton. Insights into seizure propagation from axonal conduction times. In: Epilepsy as a dynamic disease. J. Milton, P. Jung, Eds. New York. Springer-Verlag 15-23 (2002).

[22] M. Morita Associative memory with non-monotone dynamics Neural Networks 115 123 1993

[23] M. Proctor, K. Gale. Basal Ganglia and Brainstem Anatomy and Physiology, In: Epilepsy: A comprehensive textbook. J. Engel, T. A. Pedley, Eds. Philadelphia, PA: Lippincott-Raven 353-368 (1997).

[24] P. A. Schwartzkroin, D. C. McIntyre. Limbic anatomy and physiology. In: Epilepsy: a comprehensive textbook. J. Engel, T. A. Pedley, Eds. Philadelphia, PA: Lippincott-Raven 323-340 (1997).

[25] P. Tiňo, B. G. Horne, C. L. Giles Attractive periodic sets in discrete-time recurrent networks with emphasis on fixed-point stability and bifurcations in two-neuron networks Neural Comput. 1379 1414 2001

[26] R.D. Traub, R. Miles. Neuronal networks of the hippocampus. Cambridge University Press, New York, 1991.

Cité par Sources :