Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 26-66.

Voir la notice de l'article provenant de la source EDP Sciences

We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function of the connection strength — as the synapses are made more reliable, there is a sudden onset of synchronous behavior. A detailed understanding of the dynamics involves both a characterization of the size of the giant component in a certain random graph process, and control of the pathwise dynamics of the system by obtaining exponential bounds for the probabilities of events far from the mean.
DOI : 10.1051/mmnp/20105202

R. E. Lee DeVille 1 ; C. S. Peskin 2 ; J. H. Spencer 2

1 Department of Mathematics, University of Illinois, Urbana, IL 60801
2 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
@article{MMNP_2010_5_2_a2,
     author = {R. E. Lee DeVille and C. S. Peskin and J. H. Spencer},
     title = {Dynamics of {Stochastic} {Neuronal} {Networks} and the {Connections} to {Random} {Graph} {Theory}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {26--66},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/}
}
TY  - JOUR
AU  - R. E. Lee DeVille
AU  - C. S. Peskin
AU  - J. H. Spencer
TI  - Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 26
EP  - 66
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/
DO  - 10.1051/mmnp/20105202
LA  - en
ID  - MMNP_2010_5_2_a2
ER  - 
%0 Journal Article
%A R. E. Lee DeVille
%A C. S. Peskin
%A J. H. Spencer
%T Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory
%J Mathematical modelling of natural phenomena
%D 2010
%P 26-66
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/
%R 10.1051/mmnp/20105202
%G en
%F MMNP_2010_5_2_a2
R. E. Lee DeVille; C. S. Peskin; J. H. Spencer. Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 26-66. doi : 10.1051/mmnp/20105202. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/

[1] L. F. Abbott, C. Van Vreeswijk Asynchronous states in networks of pulse-coupled oscillators Phys. Rev. E 1993 1483 1490

[2] M. Abramowitz, I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, Washington, D.C., 1964.

[3] N. Alon, J. H. Spencer. The probabilistic method. Wiley Sons Inc., Hoboken, NJ, 2008.

[4] F. Apfaltrer, C. Ly, D. Tranchina Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods Network-computation in Neural Systems 2006 373 418

[5] M. Bennett, M. F. Schatz, H. Rockwood, K. Wiesenfeld Huygens’s clocks R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2002 563 579

[6] Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge, 2001.

[7] P. C. Bressloff, S. Coombes Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators Phys. Rev. Lett. 1998 2168 2171

[8] N. Brunel, V. Hakim Fast global oscillations in networks of integrate-and-fire neurons with low firing rates Neural Comp. 1999 1621 1671

[9] J. Buck, E. Buck Mechanism of rhythmic synchronous flashing of fireflies Science 1968 1319 1327

[10] D. Cai, L. Tao, A. V. Rangan, D. W. Mclaughlin Kinetic theory for neuronal network dynamics Comm. Math. Sci. 2006 97 127

[11] D. Cai, L. Tao, M. Shelley, D. W. Mclaughlin An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex Proc. Nat. Acad. Sci. USA 2004 7757 7762

[12] S. R. Campbell, D. L. L. Wang, C. Jayaprakash Synchrony and desynchrony in integrate-and-fire oscillators Neur. Comp. 1999 1595 1619

[13] J. H. E. Cartwright, V. M. Eguíluz, E. Hernández-García, O. Piro Dynamics of elastic excitable media Int. J. Bif. Chaos 1999 2197 2202

[14] C. A. Czeisler, E. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, R. S. Knauer Human sleep: its duration and organization depend on its circadian phase Science 1980 1264 1267

[15] M. De Sousa Vieira Chaos and synchronized chaos in an earthquake model Phys. Rev. Lett. 1999 201 204

[16] R. E. L. Deville, C. S. Peskin Synchrony and asynchrony in a fully stochastic neural network Bull. Math. Bio. 2008 1608 1633

[17] B. Doiron, J. Rinzel, A. Reyes Stochastic synchronization in finite size spiking networks Phys. Rev. E (3) 2006

[18] P. Erdős, A. Rényi On random graphs. I Publ. Math. Debrecen 1959 290 297

[19] P. Erdős, A. Rényi On the evolution of random graphs Magyar Tud. Akad. Mat. Kutató Int. Közl. 1960 17 61

[20] G. B. Ermentrout, J. Rinzel Reflected waves in an inhomogeneous excitable medium SIAM J. Appl. Math. 1996 1107 1128

[21] W. Gerstner, J. L. Van Hemmen Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units Phys. Rev. Lett. 1993 312 315

[22] L. Glass, A. L. Goldberger, M. Courtemanche, A. Shrier Nonlinear dynamics, chaos and complex cardiac arrhythmias Proc. Roy. Soc. London Ser. A 1987 9 26

[23] M. R. Guevara, L. Glass Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias J. Math. Bio. 1982 1 23

[24] D. Hansel, H. Sompolinsky Synchronization and computation in a chaotic neural network Phys. Rev. Lett. 1992 718 721

[25] E. Haskell, D. Q. Nykamp, D. Tranchina Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size Network-Computation in Neural Systems 2001 141 174

[26] C. Huygens. Horoloquium oscilatorium. Parisiis, Paris, 1673.

[27] R. Kapral, K. Showalter (eds.). Chemical waves and patterns. Springer, 1994.

[28] B. W. Knight Dynamics of encoding in a population of neurons J. Gen. Phys. 1972 734 766

[29] Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer Series in Synergetics, Vol. 19, Springer-Verlag, Berlin, 1984.

[30] Y. Kuramoto Collective synchronization of pulse-coupled oscillators and excitable units Phys. D 1991 15 30

[31] T. G. Kurtz Relationship between stochastic and deterministic models for chemical reactions J. Chem. Phys. 1972 2976 2978

[32] T. G. Kurtz Strong approximation theorems for density dependent Markov chains Stoch. Proc. Appl. 1977/78 223 240

[33] Z.-H. Liu, P.M. Hui Collective signaling behavior in a networked-oscillator model Phys. A 2007

[34] R. E. Mirollo, S. H. Strogatz Synchronization of pulse-coupled biological oscillators SIAM J. Appl. Math. 1990 1645 1662

[35] Z. Olami, H. J. S. Feder, K. Christensen Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes Phys. Rev. Lett. 1992 1244 1247

[36] K. Pakdaman, D. Mestivier Noise induced synchronization in a neuronal oscillator Phys. D 2004 123 137

[37] C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute, New York University, New York, 1975.

[38] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, 2003.

[39] W. Senn, R. Urbanczik . Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize SIAM J. Appl. Math. 2000/01 1143 1155

[40] A. Shwartz, A. Weiss. Large deviations for performance analysis. Chapman Hall, London, 1995.

[41] L. Sirovich Dynamics of neuronal populations: eigenfunction theory Network-computation in Neural Systems 2003 249 272

[42] L. Sirovich, A. Omrtag, B. W. Knight Dynamics of neuronal populations: The equilibrium solution SIAM J. Appl. Math. 2000 2009 2028

[43] S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.

[44] C Sulem, P.-L. Sulem. The nonlinear Schrödinger equation. Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York, 1999.

[45] R. Temam, A. Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, Cambridge, 2005.

[46] D. Terman, N. Kopell, A. Bose Dynamics of two mutually coupled slow inhibitory neurons Phys. D 1998 241 275

[47] M. Tsodyks, I. Mitkov, H. Sompolinsky Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions Phys. Rev. Lett. 1993 1280 1283

[48] J. J. Tyson, C. I. Hong, C. D. Thron, B. Novak A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM Biophys. J. 1999 2411 2417

[49] J. J. Tyson, J. P. Keener Singular perturbation theory of traveling waves in excitable media (a review) Phys. D 1988 327 361

[50] C. Van Vreeswijk, L. Abbott, G. Ermentrout When inhibition not excitation synchronizes neural firing J. Comp. Neurosci. 1994 313 322

[51] C. Van Vreeswijk, H. Sompolinsky Chaotic balance state in a model of cortical circuits Neur. Comp. 1998 1321 1372

[52] A. T. Winfree. The geometry of biological time. Interdisciplinary Applied Mathematics, Vol. 12, Springer-Verlag, New York, 2001.

Cité par Sources :