Voir la notice de l'article provenant de la source EDP Sciences
R. E. Lee DeVille 1 ; C. S. Peskin 2 ; J. H. Spencer 2
@article{MMNP_2010_5_2_a2, author = {R. E. Lee DeVille and C. S. Peskin and J. H. Spencer}, title = {Dynamics of {Stochastic} {Neuronal} {Networks} and the {Connections} to {Random} {Graph} {Theory}}, journal = {Mathematical modelling of natural phenomena}, pages = {26--66}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2010}, doi = {10.1051/mmnp/20105202}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/} }
TY - JOUR AU - R. E. Lee DeVille AU - C. S. Peskin AU - J. H. Spencer TI - Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory JO - Mathematical modelling of natural phenomena PY - 2010 SP - 26 EP - 66 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/ DO - 10.1051/mmnp/20105202 LA - en ID - MMNP_2010_5_2_a2 ER -
%0 Journal Article %A R. E. Lee DeVille %A C. S. Peskin %A J. H. Spencer %T Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory %J Mathematical modelling of natural phenomena %D 2010 %P 26-66 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/ %R 10.1051/mmnp/20105202 %G en %F MMNP_2010_5_2_a2
R. E. Lee DeVille; C. S. Peskin; J. H. Spencer. Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 26-66. doi : 10.1051/mmnp/20105202. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105202/
[1] Asynchronous states in networks of pulse-coupled oscillators Phys. Rev. E 1993 1483 1490
,[2] M. Abramowitz, I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, Washington, D.C., 1964.
[3] N. Alon, J. H. Spencer. The probabilistic method. Wiley Sons Inc., Hoboken, NJ, 2008.
[4] Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods Network-computation in Neural Systems 2006 373 418
, ,[5] Huygens’s clocks R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2002 563 579
, , ,[6] Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge, 2001.
[7] Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators Phys. Rev. Lett. 1998 2168 2171
,[8] Fast global oscillations in networks of integrate-and-fire neurons with low firing rates Neural Comp. 1999 1621 1671
,[9] Mechanism of rhythmic synchronous flashing of fireflies Science 1968 1319 1327
,[10] Kinetic theory for neuronal network dynamics Comm. Math. Sci. 2006 97 127
, , ,[11] An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex Proc. Nat. Acad. Sci. USA 2004 7757 7762
, , ,[12] Synchrony and desynchrony in integrate-and-fire oscillators Neur. Comp. 1999 1595 1619
, ,[13] Dynamics of elastic excitable media Int. J. Bif. Chaos 1999 2197 2202
, , ,[14] Human sleep: its duration and organization depend on its circadian phase Science 1980 1264 1267
, , , ,[15] Chaos and synchronized chaos in an earthquake model Phys. Rev. Lett. 1999 201 204
[16] Synchrony and asynchrony in a fully stochastic neural network Bull. Math. Bio. 2008 1608 1633
,[17] Stochastic synchronization in finite size spiking networks Phys. Rev. E (3) 2006
, ,[18] On random graphs. I Publ. Math. Debrecen 1959 290 297
,[19] On the evolution of random graphs Magyar Tud. Akad. Mat. Kutató Int. Közl. 1960 17 61
,[20] Reflected waves in an inhomogeneous excitable medium SIAM J. Appl. Math. 1996 1107 1128
,[21] Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units Phys. Rev. Lett. 1993 312 315
,[22] Nonlinear dynamics, chaos and complex cardiac arrhythmias Proc. Roy. Soc. London Ser. A 1987 9 26
, , ,[23] Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias J. Math. Bio. 1982 1 23
,[24] Synchronization and computation in a chaotic neural network Phys. Rev. Lett. 1992 718 721
,[25] Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size Network-Computation in Neural Systems 2001 141 174
, ,[26] C. Huygens. Horoloquium oscilatorium. Parisiis, Paris, 1673.
[27] R. Kapral, K. Showalter (eds.). Chemical waves and patterns. Springer, 1994.
[28] Dynamics of encoding in a population of neurons J. Gen. Phys. 1972 734 766
[29] Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer Series in Synergetics, Vol. 19, Springer-Verlag, Berlin, 1984.
[30] Collective synchronization of pulse-coupled oscillators and excitable units Phys. D 1991 15 30
[31] Relationship between stochastic and deterministic models for chemical reactions J. Chem. Phys. 1972 2976 2978
[32] Strong approximation theorems for density dependent Markov chains Stoch. Proc. Appl. 1977/78 223 240
[33] Collective signaling behavior in a networked-oscillator model Phys. A 2007
,[34] Synchronization of pulse-coupled biological oscillators SIAM J. Appl. Math. 1990 1645 1662
,[35] Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes Phys. Rev. Lett. 1992 1244 1247
, ,[36] Noise induced synchronization in a neuronal oscillator Phys. D 2004 123 137
,[37] C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute, New York University, New York, 1975.
[38] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, 2003.
[39] . Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize SIAM J. Appl. Math. 2000/01 1143 1155
,[40] A. Shwartz, A. Weiss. Large deviations for performance analysis. Chapman Hall, London, 1995.
[41] Dynamics of neuronal populations: eigenfunction theory Network-computation in Neural Systems 2003 249 272
[42] Dynamics of neuronal populations: The equilibrium solution SIAM J. Appl. Math. 2000 2009 2028
, ,[43] S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.
[44] C Sulem, P.-L. Sulem. The nonlinear Schrödinger equation. Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York, 1999.
[45] R. Temam, A. Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, Cambridge, 2005.
[46] Dynamics of two mutually coupled slow inhibitory neurons Phys. D 1998 241 275
, ,[47] Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions Phys. Rev. Lett. 1993 1280 1283
, ,[48] A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM Biophys. J. 1999 2411 2417
, , ,[49] Singular perturbation theory of traveling waves in excitable media (a review) Phys. D 1988 327 361
,[50] When inhibition not excitation synchronizes neural firing J. Comp. Neurosci. 1994 313 322
, ,[51] Chaotic balance state in a model of cortical circuits Neur. Comp. 1998 1321 1372
,[52] A. T. Winfree. The geometry of biological time. Interdisciplinary Applied Mathematics, Vol. 12, Springer-Verlag, New York, 2001.
Cité par Sources :