Analysis of Synchronization in a Neural Population by a Population Density Approach
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 5-25.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we deal with a model describing the evolution in time of the density of a neural population in a state space, where the state is given by Izhikevich’s two - dimensional single neuron model. The main goal is to mathematically describe the occurrence of a significant phenomenon observed in neurons populations, the synchronization. To this end, we are making the transition to phase density population, and use Malkin theorem to calculate the phase deviations of a weakly coupled population model.
DOI : 10.1051/mmnp/20105201

A. Garenne 1, 2 ; J. Henry 3 ; C. O. Tarniceriu 3, 4

1 Basal Gang, Laboratoire Mouvement, Adaptation, Cognition, CNRS-UMR 5227, Bordeaux, France
2 Université Victor Segalen Bordeaux 2, Bordeaux, France
3 INRIA Bordeaux Sud Ouest IMB, 351, Cours de la Libération, 33405 Talence cedex, France
4 Department of Sciences, "Al. I. Cuza University", Iaşi, Romania
@article{MMNP_2010_5_2_a1,
     author = {A. Garenne and J. Henry and C. O. Tarniceriu},
     title = {Analysis of {Synchronization} in a {Neural} {Population} by a {Population} {Density} {Approach}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {5--25},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/}
}
TY  - JOUR
AU  - A. Garenne
AU  - J. Henry
AU  - C. O. Tarniceriu
TI  - Analysis of Synchronization in a Neural Population by a Population Density Approach
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 5
EP  - 25
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/
DO  - 10.1051/mmnp/20105201
LA  - en
ID  - MMNP_2010_5_2_a1
ER  - 
%0 Journal Article
%A A. Garenne
%A J. Henry
%A C. O. Tarniceriu
%T Analysis of Synchronization in a Neural Population by a Population Density Approach
%J Mathematical modelling of natural phenomena
%D 2010
%P 5-25
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/
%R 10.1051/mmnp/20105201
%G en
%F MMNP_2010_5_2_a1
A. Garenne; J. Henry; C. O. Tarniceriu. Analysis of Synchronization in a Neural Population by a Population Density Approach. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 5-25. doi : 10.1051/mmnp/20105201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/

[1] O. Bennani, G. Chauvet, P. Chauvet, J.M. Dupont, F. Jouen A hierarchical modeling approach of hippocampus local circuit J. Integr. Neurosci., 2009 49 76

[2] G.A. Chauvet The use of representation and formalism in a theoretical approach to integrative neuroscience J. Integr. Neurosci. 2005 291 312

[3] C. Dejean, C.E. Gross, B. Bioulac, T. Boraud Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat J. Neurophysiol. 2008 385 396

[4] O. Faugeras, F. Grimbert, J.-J. Slotine Absolute stability and complete synchronization in a class of neural fields models SIAM J. Appl. Math. 2008 205 250

[5] F. C. Hoppensteadt, E. Izhikevich. Weakly connected neural networks. Springer-Verlag, New York, 1997.

[6] E. M. Izhikevich. Dynamical Systems in Neuroscience: The geometry of excitability and bursting. The MIT Press, 2007.

[7] E. M. Izhikevich Phase equations for relaxation oscillators SIAM J. Appl. Math. 2000 1789 1804

[8] E.M. Izhikevich Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 2004 1063 1070

[9] N. Koppel, G.B. Ermentrout Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators Handbook of Dynamical Systems 2002 3 54

[10] G. S. Medvedev, N. Koppel Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators SIAM J. Appl. Math. 2001 1762 1801

[11] C. Meunier, I. Segev Playing the devil’s advocate: is the Hodgkin-Huxley model useful? Trends Neurosci. 2002 558 563

[12] J. Modolo. Modélisation et analyse mathématique des effets de la stimulation cérébrale profonde dans la maladie de Parkinson. Thêse 2008.

[13] J. Modolo, A. Garenne, J. Henry, A. Development and validation of a neural population model based on the dynamics of discontinuous membrane potential neuron model J. Integr. Neurosci. 2007 625 656

[14] J. Modolo, J. Henry, A. Beuter Dynamics of the subthalamo-pallidal complex in Parkinson’s Disease during deep brain stimulation J. Biol. Phys. 2008 351 366

[15] J. Modolo, E. Mosekilde, A. Beuter New insights offered by a computational model of deep brain stimulation J. Physiol. Paris 2007 56 63

[16] D. Serre. Systemes de lois the conservation I. Hyperbolicité, entropies, ondes de choc. Diederot Editeur, Paris, 1996.

[17] J.H. Sheeba, A. Stefanovska, P.V. Mcclintock Neuronal synchrony during anesthesia: a thalamocortical model Biophys. J. 2008 2722 2727

Cité par Sources :