Voir la notice de l'article provenant de la source EDP Sciences
A. Garenne 1, 2 ; J. Henry 3 ; C. O. Tarniceriu 3, 4
@article{MMNP_2010_5_2_a1, author = {A. Garenne and J. Henry and C. O. Tarniceriu}, title = {Analysis of {Synchronization} in a {Neural} {Population} by a {Population} {Density} {Approach}}, journal = {Mathematical modelling of natural phenomena}, pages = {5--25}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2010}, doi = {10.1051/mmnp/20105201}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/} }
TY - JOUR AU - A. Garenne AU - J. Henry AU - C. O. Tarniceriu TI - Analysis of Synchronization in a Neural Population by a Population Density Approach JO - Mathematical modelling of natural phenomena PY - 2010 SP - 5 EP - 25 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/ DO - 10.1051/mmnp/20105201 LA - en ID - MMNP_2010_5_2_a1 ER -
%0 Journal Article %A A. Garenne %A J. Henry %A C. O. Tarniceriu %T Analysis of Synchronization in a Neural Population by a Population Density Approach %J Mathematical modelling of natural phenomena %D 2010 %P 5-25 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/ %R 10.1051/mmnp/20105201 %G en %F MMNP_2010_5_2_a1
A. Garenne; J. Henry; C. O. Tarniceriu. Analysis of Synchronization in a Neural Population by a Population Density Approach. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 5-25. doi : 10.1051/mmnp/20105201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105201/
[1] A hierarchical modeling approach of hippocampus local circuit J. Integr. Neurosci., 2009 49 76
, , , ,[2] The use of representation and formalism in a theoretical approach to integrative neuroscience J. Integr. Neurosci. 2005 291 312
[3] Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat J. Neurophysiol. 2008 385 396
, , ,[4] Absolute stability and complete synchronization in a class of neural fields models SIAM J. Appl. Math. 2008 205 250
, ,[5] F. C. Hoppensteadt, E. Izhikevich. Weakly connected neural networks. Springer-Verlag, New York, 1997.
[6] E. M. Izhikevich. Dynamical Systems in Neuroscience: The geometry of excitability and bursting. The MIT Press, 2007.
[7] Phase equations for relaxation oscillators SIAM J. Appl. Math. 2000 1789 1804
[8] Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 2004 1063 1070
[9] Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators Handbook of Dynamical Systems 2002 3 54
,[10] Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators SIAM J. Appl. Math. 2001 1762 1801
,[11] Playing the devil’s advocate: is the Hodgkin-Huxley model useful? Trends Neurosci. 2002 558 563
,[12] J. Modolo. Modélisation et analyse mathématique des effets de la stimulation cérébrale profonde dans la maladie de Parkinson. Thêse 2008.
[13] Development and validation of a neural population model based on the dynamics of discontinuous membrane potential neuron model J. Integr. Neurosci. 2007 625 656
, , ,[14] Dynamics of the subthalamo-pallidal complex in Parkinson’s Disease during deep brain stimulation J. Biol. Phys. 2008 351 366
, ,[15] New insights offered by a computational model of deep brain stimulation J. Physiol. Paris 2007 56 63
, ,[16] D. Serre. Systemes de lois the conservation I. Hyperbolicité, entropies, ondes de choc. Diederot Editeur, Paris, 1996.
[17] Neuronal synchrony during anesthesia: a thalamocortical model Biophys. J. 2008 2722 2727
, ,Cité par Sources :