Voir la notice de l'article provenant de la source EDP Sciences
S. R. McDougall 1 ; M. A.J. Chaplain 2 ; A. Stéphanou 3 ; A. R.A. Anderson 2
@article{MMNP_2010_5_1_a8, author = {S. R. McDougall and M. A.J. Chaplain and A. St\'ephanou and A. R.A. Anderson}, title = {Modelling the {Impact} of {Pericyte} {Migration} and {Coverage} of {Vessels} on the {Efficacy} of {Vascular} {Disrupting} {Agents}}, journal = {Mathematical modelling of natural phenomena}, pages = {163--202}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2010}, doi = {10.1051/mmnp/20105108}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105108/} }
TY - JOUR AU - S. R. McDougall AU - M. A.J. Chaplain AU - A. Stéphanou AU - A. R.A. Anderson TI - Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents JO - Mathematical modelling of natural phenomena PY - 2010 SP - 163 EP - 202 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105108/ DO - 10.1051/mmnp/20105108 LA - en ID - MMNP_2010_5_1_a8 ER -
%0 Journal Article %A S. R. McDougall %A M. A.J. Chaplain %A A. Stéphanou %A A. R.A. Anderson %T Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents %J Mathematical modelling of natural phenomena %D 2010 %P 163-202 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105108/ %R 10.1051/mmnp/20105108 %G en %F MMNP_2010_5_1_a8
S. R. McDougall; M. A.J. Chaplain; A. Stéphanou; A. R.A. Anderson. Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 163-202. doi : 10.1051/mmnp/20105108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105108/
[1] A cellular automaton model for tumour growth in inhomogeneous environment J. Theor. Biol. 2003 257 274
, ,[2] Continuous and discrete mathematical models of tumor-induced angiogenesis Bull. Math. Biol. 1998 857 899
,[3] Endothelial/pericyte interactions Circulation Research 2005 512 523
, ,[4] Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis Microvasc. Res. 1977 53 65
,[5] Pericytes from human non-small cell lung carcinomas: An attractive target for anti-angiogenic therapy Microvascular Res. 2006 163 174
[6] Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model Microvasc. Res. 1996 327 346
, , , , ,[7] A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF Development 1998 1591 1598
, ,[8] D. Bray. Cell Movements. New-York: Garland Publishing, 1992.
[9] R.A. Brekken, P.E. Thorpe. Vascular endothelial growth factor and vascular targeting of solid tumors. 21 (2001), 4221–4229.
[10] Mechanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases European J. Cancer 2006 310 318
, , , , , , ,[11] Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activator system Math. Mod. Meth. Appl. Sci. 2005 1685 1734
,[12] “Microhydrodynamics phenomena in the circulation.” In: Nanoscale fluid dynamics in physiological processes: A review study WIT Press, Southampton 1999 219 236
, ,[13] Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices J. Cell Sci. 2000 917 930
, , ,[14] Theoretical models for drug delivery to solid tumours Crit. Rev. Biomed. Eng. 1997 503 571
,[15] Angiogenic factors Science 1987 442 447
,[16] Y.C. Fung. Biomechanics. Springer-Verlag, New-York, 1993.
[17] Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy Am. J. Path. 2003 183 193
, , , , ,[18] Structural and biophysical simulation of angiogenesis and vascular remodeling Developmental Dynamics 2001 387 401
,[19] Development of matrix metalloproteinase inhibitors in cancer therapy Journal of the National Cancer Institute 2001 178 193
,[20] Altered pericyte-endothelial relations in the rat retina during aging: Implications for vessel stability Neurobiology of Aging 2006 1838 1847
, , , , ,[21] Tumour biology: herceptin acts as an antiangiogenic cocktail Nature 2002 279 280
[22] Theoretical analysis of conjugate localization in two-step cancer chemotherapy J. Math. Biol. 1999 353 376
, ,[23] Molecular regulation of vessel maturation Nat. Med. 2003 685 93
[24] Adaptive regulation of wall shear stress optimizing vascular tree function Bull. Math. Biology. 1984 127 137
, ,[25] Vessel distensibility and flow distribution in vascular trees J. Math. Biol. 2002 360 374
,[26] Targeting integrins αvβ3 and αvβ5 for blocking tumour-induced angiogenesis Adv. Exp. Med. Biol. 2000 169 180
[27] Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma Bull. Math. Biol. 2001 801 863
, , ,[28] Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies Bull. Math. Biol. 2002 673 702
, , ,[29] Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies J. Theor. Biol. 2006 564 589
, ,[30] Endothelial cell-matrix interactions: in vitro models of angiogenesis J. Histochem. Cytochem. 1986 85 91
,[31] Rapid vascular regrowth in tumors after reversal of VEGF inhibition J. Clin. Investigation 2006 2610 2621
[32] Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors Am. J. Path. 2002 985 1000
, , , , ,[33] Aberrant vascular architecture in tumors and its importance in drug-based therapies Drug Discovery Today 2003 396 403
[34] Tumor-related angiogenesis Crit. Rev. Oncol. Hematol. 1989 197 242
,[35] Biophysical aspects of blood flow in the microvasculature Cardiovasc. Res. 1996 654 667
, ,[36] Structural adaptation and stability of microvascular networks: theory and simulation Am. J. Physiol. 1998 H349 H360
, ,[37] Structural adaptation of microvascular networks: functional roles of adaptive responses Am. J. Physiol. 2001 H1015 H1025
, ,[38] Structural adaptation of vascular networks: role of the pressure response Hypertension 2001 1476 1479
, ,[39] Computational vascular fluid dynamics: problems, models and methods Comput. Visual. Sci. 2000 163 197
, ,[40] Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews Cancer 2002 826 835
[41] Memoire sur le developpement, la structure et les proprietes physiologiques des capillaires sanguins et lymphatiques Arch. Physiol. Norm. Pathol. 1873 603 663
[42] T.W. Secomb. Mechanics of blood flow in the microcirculation. In “Biological Fluid Dynamics.” eds. C.P. Ellington and T.J. Pedley. Company of Biologists, Cambridge, 1995, pp. 305-321.
[43] Studies of inflammation III. Growing capillaries: Their structure and permeability Virchows Arch. Path. Anat. 1963 97 141
[44] Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells Lab. Invest. 1984 624 634
, , , ,[45] Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies Math. Comp. Model. 2005 1137 1156
, , ,[46] Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis Math. Comp. Model. 2005 96 123
, , ,[47] How matrix metalloproteinases regulate cell behavior Annu. Rev. Cell Dev. Biol. 2001 463 516
,[48] Disrupting tumour blood vessels Nature Reviews Cancer 2005 423 433
, ,[49] Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells J. Cell Sci. 2000 3979 3987
, , ,Cité par Sources :