Voir la notice de l'article provenant de la source EDP Sciences
A. Marrocco 1 ; H. Henry 2 ; I. B. Holland 3 ; M. Plapp 2 ; S. J. Séror 3 ; B. Perthame 1, 4
@article{MMNP_2010_5_1_a7, author = {A. Marrocco and H. Henry and I. B. Holland and M. Plapp and S. J. S\'eror and B. Perthame}, title = {Models of {Self-Organizing} {Bacterial} {Communities} and {Comparisons} with {Experimental} {Observations}}, journal = {Mathematical modelling of natural phenomena}, pages = {148--162}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2010}, doi = {10.1051/mmnp/20105107}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105107/} }
TY - JOUR AU - A. Marrocco AU - H. Henry AU - I. B. Holland AU - M. Plapp AU - S. J. Séror AU - B. Perthame TI - Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations JO - Mathematical modelling of natural phenomena PY - 2010 SP - 148 EP - 162 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105107/ DO - 10.1051/mmnp/20105107 LA - en ID - MMNP_2010_5_1_a7 ER -
%0 Journal Article %A A. Marrocco %A H. Henry %A I. B. Holland %A M. Plapp %A S. J. Séror %A B. Perthame %T Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations %J Mathematical modelling of natural phenomena %D 2010 %P 148-162 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105107/ %R 10.1051/mmnp/20105107 %G en %F MMNP_2010_5_1_a7
A. Marrocco; H. Henry; I. B. Holland; M. Plapp; S. J. Séror; B. Perthame. Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 148-162. doi : 10.1051/mmnp/20105107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105107/
[1] Spreading of liquid drops on agar gels Eur. Phys. J. Special Topics 2009 185 188
, ,[2] The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens J. Math. Biol. 2000 27 63
, , ,[3] Two dimensional Keller-Segel model in ℝ2: optimal critical mass and qualitative properties of the solution Electron. J. Diff. Eqns. 2006 1 32
, ,[4] Kinetic model of Proteus mirabilis swarm colony development J. Math. Biology 1998 249 268
,[5] Existence result of a model of Proteus mirabilis swarm Diff. and Integr. eq. 2006 697 720
[6] Studies of bacterial branching growth using reaction-diffusion models for colonial development Phys. A 1998 510 554
, , ,[7] Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability Chem. Eng. Sci. 1983 29 43
,[8] Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC Microbiology 2009 398 412
, , , , , , ,[9] Branched swarming patterns on a synthetic medium formed by wild type Bacillus subtilis strain 3610 Microbiology 2004 1839 1849
, , ,[10] Comparative analysis of the development of swarming communities Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium J. Bacteriol. 2005 65 74
, , ,[11] Modeling spatio-temporal patterns created by Bacillus-subtilis J. Theor. Biol. 1997 177 185
, , , ,[12] Model for chemotaxis J. Theor. Biol. 1971 225 234
,[13] Fluctuation induced diffusive instabilities Nature 1998 556 558
,[14] The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime Physica D 2005 258 293
, ,[15] Lubricating bacteria model for branching growth of bacterial colony Phys. Rev. E, Phys. plasmas fluids Relat. Interdisciplinary Topics 1999 7025 7035
, , ,[16] 2D simulation of chemotactic bacteria aggregation ESAIM: Math. Modelling and Numerical Analysis 2003 617 630
[17] A. Marrocco. Aggrégation de bactéries. Simulations numériques de modèles de réaction-diffusion à l’aide d’éléments finis mixtes. INRIA report (2007) : http://hal.inria.fr/docs/00/12/38/91/PDF/RR-6092.pdf
[18] The branching programme of mouse lung development Nature 2008 745 750
, , ,[19] Reaction diffusion modelling of bacterial colony patterns Physica A 2000 283 303
, ,[20] Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion Phys. Rev. E 2002
,[21] Traveling spike autosolitons in the Gray-Scott model Physica D 2001 112 131
,[22] J. D. Murray. Mathematical biology, Vol. 1 and 2, Second edition. Springer (2002).
[23] B. Perthame. Transport Equations in Biology (LN Series Frontiers in Mathematics), Birkhauser, (2007).
[24] Periodic phenomena in Proteus mirabilis swarm colony development J. Bacteriol. 1996 6525 6538
, , , , ,[25] Fingering instabilities in thin wetting films Phys. Rev. Lett. 1989 1496 1499
, ,[26] Phase transition of traveling waves in bacterial colony pattern Phys. Rev. E 2004 1 9
, ,Cité par Sources :