Volume Filling Effect in Modelling Chemotaxis
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 123-147.

Voir la notice de l'article provenant de la source EDP Sciences

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of efforts were concentrated, so far, on mathematical models in which the formation of aggregate is interpreted as finite time blow-up of cell density. In recently proposed models cells are no more treated as point masses and their finite volume is accounted for. Thus, arbitrary high cell densities are precluded in such description and a threshold value for cells density is a priori assumed. Different modeling approaches based on this assumption lead to a class of quasilinear parabolic systems with strong nonlinearities including degenerate or singular diffusion. We give a survey of analytical results on the existence and uniqueness of global-in-time solutions, their convergence to stationary states and on a possibility of reaching the density threshold by a solution. Unsolved problems are pointed as well.
DOI : 10.1051/mmnp/20105106

D. Wrzosek 1

1 Institute of Applied Mathematics and Mechanics, Warsaw University Banacha 2, 02-097 Warszawa, Poland
@article{MMNP_2010_5_1_a6,
     author = {D. Wrzosek},
     title = {Volume {Filling} {Effect} in {Modelling} {Chemotaxis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {123--147},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2010},
     doi = {10.1051/mmnp/20105106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/}
}
TY  - JOUR
AU  - D. Wrzosek
TI  - Volume Filling Effect in Modelling Chemotaxis
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 123
EP  - 147
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/
DO  - 10.1051/mmnp/20105106
LA  - en
ID  - MMNP_2010_5_1_a6
ER  - 
%0 Journal Article
%A D. Wrzosek
%T Volume Filling Effect in Modelling Chemotaxis
%J Mathematical modelling of natural phenomena
%D 2010
%P 123-147
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/
%R 10.1051/mmnp/20105106
%G en
%F MMNP_2010_5_1_a6
D. Wrzosek. Volume Filling Effect in Modelling Chemotaxis. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 123-147. doi : 10.1051/mmnp/20105106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/

[1] R. A. Adams. Sobolev spaces. Academic Press, New York, 1975.

[2] M. Alber, R. Gejji, B. Kaźmierczak Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field Applied Mathematics Letters. 2009 1645 1648

[3] B. Ainsebaa, M. Bendahmaneb, A. Noussairc A reaction–diffusion system modeling predator–prey with prey-taxis Nonlinear Anal. R. World Appl. 2008 2086 2105

[4] H. Amann. Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z., 202 (1989), No. 2, 219–250.

[5] H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.9–126, in: (H. Triebel, H.J. Schmeisser., eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., 133, Teubner, Stuttgart, 1993.

[6] D. G. Aronson. The porous medium equation., in: (A.Fasano, M.Primicerio.,eds.) Some Problems in Nonlinear Diffusion. Lecture Notes in Mathematics., 1224, Springer, Berlin, 1986.

[7] M. Bendahmane, K. H. Karlsen, J. M. Urbano On a two-sidedly degenerate chemotaxis model with volume-filling effect. Math Models Methods Appl. Sci. 2007 783 804

[8] P. Biler Local and global solvability of some parabolic systems modelling chemotaxis Adv. Math. Sci. Appl. Nachr. 1998 76 114

[9] M. P. Brenner, L. S. Levitov, E. O. Budrene Physical mechanism for chemotactic pattern formation by bacteria Biophys. J. 1998 1677 1693

[10] H. M. Byrne, M. R. Owen A new interpretation of the Keller-Segel model based on multiphase modelling J. Math. Biol. 2004 604 626

[11] F. A. C. C. Chalub, J. F. Rodrigues A class of kinetic models for chemotaxis with threshold to prevent overcrowding Portugaliae Math. 2006 227 250

[12] V. Calvez, J. A. Carillo Volume effects in the KellerSegel model: energy estimates preventing blow-up J. Math. Pures Appl. 2006 155 175

[13] T. Cieślak . The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. 127–132, in: Self-similar solutions of nonlinear PDE, Banach Center Publ., 74, Warsaw, 2006.

[14] T. Cieślak Quasilinear nonuniformly parabolic system modelling chemotaxis J. Math. Anal. Appl. 2007 1410 1426

[15] T. Cieślak, C. Morales-Rodrigo Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions Topol. Methods Nonlinear Anal. 2007 361 381

[16] T. Cieślak, M. Winkler Finite-time blow-up in a quasilinear system of chemotaxis Nonlinearity. 2008 1057 1076

[17] Y. S. Choi, Z. A. Wang Prevention of blow up by fast diffusion in chemotaxis J. Math. Anal. Appl. 2010 553 564

[18] M. Difrancesco, J. Rosado Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding Nonlinearity. 2008 2715 2730

[19] Y. Dolak, C. Schmeiser The Keller-Segel model with logistic sensitivity function and small diffusivity SIAM J. Appl. Math. 2005 286 308

[20] E. Feireisl, Ph. Laurençot, H. Petzeltova On convergence to equilibria for the Keller-Segel chemotaxis model J.Diff.Equations. 2007 551 569

[21] H. Gajewski, K. Zacharias Global behavior of a reaction-diffusion system modelling chemotaxis Math. Nachr. 1998 77 114

[22] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.

[23] M. A. Herrero, J. J. L Velázquez A blow-up mechanism for a chemotaxis model Ann. Scuola Norm. Sup. Pisa. 1997 633 683

[24] M. A. Herrero, J. J. L Velázquez Chemotactic collapse for the Keller-Segel model J. Math. Biol. 1996 583 623

[25] T. Hillen, K. J. Painter A user’s guide to PDE models for chemotaxis J. Math. Biol. 2009 183 217

[26] T. Hillen, K. Painter Global existence for a parabolic chemotaxis model with prevention of overcrowding Adv. Appl. Math. 2001 280 301

[27] D. Horstmann Lyapunov functions and Lp Colloq. Math. 2001 113 127

[28] D. Horstmann From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I Jahresber. Deutsch. Math.-Verein. 2003 103 165

[29] D. Horstmann From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I Jahresber. Deutsch. Math.-Verein. 2004 51 69

[30] J. Jiang, Y. Zhang On Convergence to equilibria for a Chemotaxis Model with Volume filling effect Asymptotic Analysis. 2009 79 102

[31] E. Keller, L. Segel Initiation of slime mold aggregation viewed as an instability J. Theor. Biology. 1970 399 415

[32] R. Kowalczyk, A. Gamba, L. Preciosi On the stability of homogeneous solutions to some aggregation models Discrete Contin. Dynam. Systems-Series B. 2004 204 220

[33] Ph. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. 273-290 in: Progress in Nonlinear Differential Equations and Their Applications., 64, Birkhäuser, Basel, 2005.

[34] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.

[35] P. M. Lushnikov, N. Chen, M. Alber Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact Phys. Rev. E. 2008

[36] T. Nagai Blow-up of radially symetric solutions to a chemotaxis system Adv. Math. Sci. Appl. 1995 581 601

[37] T. Nagai, T. Senba, T. Suzuki Chemotaxis collapse in a parabolic system of mathematical biology Hiroshima Math. J. 2000 463 497

[38] K. Osaki, A. Yagi Finite dimensional attractors for one dimensional Keller-Segel equations Funkcial. Ekvac. 2001 441 469

[39] K. Osaki, A. Yagi Global existence for a chemotaxis-growth system in ℝ2 Adv. Math. Sci. Appl. 2002 587 606

[40] K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura Exponential attractor for a chemotaxis-growth system of equations Nonlinear Anal. 2002 119 144

[41] K. Painter, T. Hillen Volume-filling and quorum-sensing in models for chemosensitive movement Canadian Appl. Math. Q. 2002 501 543

[42] C. S. Patlak Random walk with persistence and external bias Bull. Math. Biol. Biophys. 1953 311 338

[43] B. Perthame, A. -L. Dalibard Existence of solutions of the hyperbolic Keller-Segel model Trans. Amer. Math. Soc. 2008 2319 2335

[44] A. B. Potapov, T. Hillen Metastability in Chemotaxis Models J. Dyn. Diff. Eq. 2005 293 330

[45] R. Schaaf Stationary solutions of Chemotaxis systems Trans. Am. Math. Soc. 1985 531 556

[46] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer- Verlag, New York, 1988.

[47] J. J. L Velázquez Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions SIAM J. Appl. Math. 2004 1198 1223

[48] M. Winkler Does a volume filling effect always prevent chemotactic colapse Math. Meth. Appl. Sci. 2010 12 24

[49] Z.A. Wang, T. Hillen Classical solutions and pattern formation for a volume filling chemotaxis model Chaos. 2007 037108 037121

[50] D. Wrzosek Global attractor for a chemotaxis model with prevention of overcrowding Nonlinear Anal. TMA. 2004 1293 1310

[51] D. Wrzosek Long time behaviour of solutions to a chemotaxis model with volume filling effect Proc. Roy. Soc. Edinburgh. 2006 431 444

[52] D. Wrzosek. Chemotaxis models with a threshold cell density. in: Parabolic and Navier-Stokes equations. Part 2, 553–566, Banach Center Publ., 81, Warsaw, 2008.

[53] D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA.. to appear.

[54] Y. Zhang, S. Zheng. Asymptotic Behavior of Solutions to a Quasilinear Nonuniform Parabolic System Modelling Chemotaxis. J. Diff. Equations. in press.

Cité par Sources :