Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20105106,
author = {D. Wrzosek},
title = {Volume {Filling} {Effect} in {Modelling} {Chemotaxis}},
journal = {Mathematical modelling of natural phenomena},
pages = {123--147},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2010},
doi = {10.1051/mmnp/20105106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/}
}
TY - JOUR AU - D. Wrzosek TI - Volume Filling Effect in Modelling Chemotaxis JO - Mathematical modelling of natural phenomena PY - 2010 SP - 123 EP - 147 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105106/ DO - 10.1051/mmnp/20105106 LA - en ID - 10_1051_mmnp_20105106 ER -
D. Wrzosek. Volume Filling Effect in Modelling Chemotaxis. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 123-147. doi: 10.1051/mmnp/20105106
[1] R. A. Adams. Sobolev spaces. Academic Press, New York, 1975.
[2] , , Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field Applied Mathematics Letters. 2009 1645 1648
[3] , , A reaction–diffusion system modeling predator–prey with prey-taxis Nonlinear Anal. R. World Appl. 2008 2086 2105
[4] H. Amann. Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z., 202 (1989), No. 2, 219–250.
[5] H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.9–126, in: (H. Triebel, H.J. Schmeisser., eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., 133, Teubner, Stuttgart, 1993.
[6] D. G. Aronson. The porous medium equation., in: (A.Fasano, M.Primicerio.,eds.) Some Problems in Nonlinear Diffusion. Lecture Notes in Mathematics., 1224, Springer, Berlin, 1986.
[7] , , On a two-sidedly degenerate chemotaxis model with volume-filling effect. Math Models Methods Appl. Sci. 2007 783 804
[8] Local and global solvability of some parabolic systems modelling chemotaxis Adv. Math. Sci. Appl. Nachr. 1998 76 114
[9] , , Physical mechanism for chemotactic pattern formation by bacteria Biophys. J. 1998 1677 1693
[10] , A new interpretation of the Keller-Segel model based on multiphase modelling J. Math. Biol. 2004 604 626
[11] , A class of kinetic models for chemotaxis with threshold to prevent overcrowding Portugaliae Math. 2006 227 250
[12] , Volume effects in the KellerSegel model: energy estimates preventing blow-up J. Math. Pures Appl. 2006 155 175
[13] T. Cieślak . The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. 127–132, in: Self-similar solutions of nonlinear PDE, Banach Center Publ., 74, Warsaw, 2006.
[14] Quasilinear nonuniformly parabolic system modelling chemotaxis J. Math. Anal. Appl. 2007 1410 1426
[15] , Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions Topol. Methods Nonlinear Anal. 2007 361 381
[16] , Finite-time blow-up in a quasilinear system of chemotaxis Nonlinearity. 2008 1057 1076
[17] , Prevention of blow up by fast diffusion in chemotaxis J. Math. Anal. Appl. 2010 553 564
[18] , Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding Nonlinearity. 2008 2715 2730
[19] , The Keller-Segel model with logistic sensitivity function and small diffusivity SIAM J. Appl. Math. 2005 286 308
[20] , , On convergence to equilibria for the Keller-Segel chemotaxis model J.Diff.Equations. 2007 551 569
[21] , Global behavior of a reaction-diffusion system modelling chemotaxis Math. Nachr. 1998 77 114
[22] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.
[23] , A blow-up mechanism for a chemotaxis model Ann. Scuola Norm. Sup. Pisa. 1997 633 683
[24] , Chemotactic collapse for the Keller-Segel model J. Math. Biol. 1996 583 623
[25] , A user’s guide to PDE models for chemotaxis J. Math. Biol. 2009 183 217
[26] , Global existence for a parabolic chemotaxis model with prevention of overcrowding Adv. Appl. Math. 2001 280 301
[27] Lyapunov functions and Lp Colloq. Math. 2001 113 127
[28] From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I Jahresber. Deutsch. Math.-Verein. 2003 103 165
[29] From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I Jahresber. Deutsch. Math.-Verein. 2004 51 69
[30] , On Convergence to equilibria for a Chemotaxis Model with Volume filling effect Asymptotic Analysis. 2009 79 102
[31] , Initiation of slime mold aggregation viewed as an instability J. Theor. Biology. 1970 399 415
[32] , , On the stability of homogeneous solutions to some aggregation models Discrete Contin. Dynam. Systems-Series B. 2004 204 220
[33] Ph. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. 273-290 in: Progress in Nonlinear Differential Equations and Their Applications., 64, Birkhäuser, Basel, 2005.
[34] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.
[35] , , Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact Phys. Rev. E. 2008
[36] Blow-up of radially symetric solutions to a chemotaxis system Adv. Math. Sci. Appl. 1995 581 601
[37] , , Chemotaxis collapse in a parabolic system of mathematical biology Hiroshima Math. J. 2000 463 497
[38] , Finite dimensional attractors for one dimensional Keller-Segel equations Funkcial. Ekvac. 2001 441 469
[39] , Global existence for a chemotaxis-growth system in ℝ2 Adv. Math. Sci. Appl. 2002 587 606
[40] , , , Exponential attractor for a chemotaxis-growth system of equations Nonlinear Anal. 2002 119 144
[41] , Volume-filling and quorum-sensing in models for chemosensitive movement Canadian Appl. Math. Q. 2002 501 543
[42] Random walk with persistence and external bias Bull. Math. Biol. Biophys. 1953 311 338
[43] , Existence of solutions of the hyperbolic Keller-Segel model Trans. Amer. Math. Soc. 2008 2319 2335
[44] , Metastability in Chemotaxis Models J. Dyn. Diff. Eq. 2005 293 330
[45] Stationary solutions of Chemotaxis systems Trans. Am. Math. Soc. 1985 531 556
[46] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer- Verlag, New York, 1988.
[47] Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions SIAM J. Appl. Math. 2004 1198 1223
[48] Does a volume filling effect always prevent chemotactic colapse Math. Meth. Appl. Sci. 2010 12 24
[49] , Classical solutions and pattern formation for a volume filling chemotaxis model Chaos. 2007 037108 037121
[50] Global attractor for a chemotaxis model with prevention of overcrowding Nonlinear Anal. TMA. 2004 1293 1310
[51] Long time behaviour of solutions to a chemotaxis model with volume filling effect Proc. Roy. Soc. Edinburgh. 2006 431 444
[52] D. Wrzosek. Chemotaxis models with a threshold cell density. in: Parabolic and Navier-Stokes equations. Part 2, 553–566, Banach Center Publ., 81, Warsaw, 2008.
[53] D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA.. to appear.
[54] Y. Zhang, S. Zheng. Asymptotic Behavior of Solutions to a Quasilinear Nonuniform Parabolic System Modelling Chemotaxis. J. Diff. Equations. in press.
Cité par Sources :