Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_1_a5, author = {A. Szab\'o and A. Czir\'ok}, title = {The {Role} of {Cell-Cell} {Adhesion} in the {Formation} of {Multicellular} {Sprouts}}, journal = {Mathematical modelling of natural phenomena}, pages = {106--122}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2010}, doi = {10.1051/mmnp/20105105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105105/} }
TY - JOUR AU - A. Szabó AU - A. Czirók TI - The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts JO - Mathematical modelling of natural phenomena PY - 2010 SP - 106 EP - 122 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105105/ DO - 10.1051/mmnp/20105105 LA - en ID - MMNP_2010_5_1_a5 ER -
%0 Journal Article %A A. Szabó %A A. Czirók %T The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts %J Mathematical modelling of natural phenomena %D 2010 %P 106-122 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105105/ %R 10.1051/mmnp/20105105 %G en %F MMNP_2010_5_1_a5
A. Szabó; A. Czirók. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 106-122. doi : 10.1051/mmnp/20105105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105105/
[1] Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006
, , ,[2] A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis Biophys. J. 2007 3105 3121
, ,[3] A. L. Bauer, T. L. Jackson, Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLOS Comp. Biol., (in press), 2009.
[4] Self-propelled particle model for cell-sorting phenomena Phys. Rev. Lett. 2008
, , , ,[5] Cell sorting is analogous to phase ordering in fluids PNAS 2000 9467 71
, ,[6] Multicellular sprouting during vasculogenesis Curr. Top. Dev. Biol. 2008 269 289
, , ,[7] Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell Biophys. J. 2007 744 768
,[8] P. G. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and wetting phenomena. Springer, New York, 2003.
[9] Locomotion of epithelial cells. Factors involved in extension of the leading edge Exp. Cell Res. 1975 425 439
[10] Force mapping in epithelial cell migration Proc. Natl. Acad. Sci. U S A 2005 2390 2395
, , , , , ,[11] Viscoelastic properties of living embryonic tissues: a quantitative study Biophys. J. 1998 2227 2234
, , ,[12] Surface tensions of embryonic tissues predict their mutual envelopment behavior Development 1996 1611 1620
, , ,[13] The differential adhesion hypothesis: a direct evaluation Dev. Biol. 2005 255 263
,[14] Dynamic imaging of cellular interactions with extracellular matrix Histochem. Cell Biol. 2004 183 90
[15] Tube travel: the role of proteases in individual and collective cancer cell invasion Cancer Res. 2008 7247 7249
,[16] Percolation, morphogenesis, and burgers dynamics in blood vessels formation Phys. Rev. Lett. 2003
, , , , , , , ,[17] Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia J. Cell Biol. 2003 1163 1177
, , , , , , , , , ,[18] Simulation of the differential adhesion driven rearrangement of biological cells Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 1993 2128 2154
,[19] Simulation of biological cell sorting using a two-dimensional extended potts model Phys. Rev. Lett. 1992 2013 2016
,[20] Repositioning of cells by mechanotaxis on surfaces with micropatterned young’s modulus J. Biomed. Mater. Res. A. 2003 605 14
, ,[21] The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors Biophysical J. 2006 2708 16
, , , ,[22] Blood vessel patterning at the embryonic midline Curr. Top. Dev. Biol. 2004 55 85
,[23] Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities Phys. Rev. Lett. 2008
, , ,[24] Compucell, a multi-model framework for simulation of morphogenesis Bioinformatics 2004 1129 1137
, , , , , , , , , ,[25] Rigidity sensing at the leading edge through alphavbeta3 integrins and rptpalpha Biophys J. 2006 1804 9
, , , ,[26] Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy J. Biomed. Mater. Res. A. 2007 803 810
,[27] Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration Exp. Cell Res. 2001 129 137
, , ,[28] Cell movement is guided by the rigidity of the substrate Biophys J. 2000 144 152
, , ,[29] A mechanical model for the formation of vascular networks in vitro Acta Biotheor 1996 271 282
, , ,[30] Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling Dev. Biol. 2006 44 54
, , , ,[31] Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth PLoS Comput. Biol. 2008
, , ,[32] Morphogenetic cell movements: diversity from modular mechanical properties Science 2008 1502 1505
[33] J. D. Murray. Mathematical Biology. Springer Verlag, Berlin, 2nd edition, 2003.
[34] J. D. Murray, D. Manoussaki, S. R. Lubkin, R. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V Mironov, and E. H. Sage, editors, Vascular morphogenesis: In vivo, in vitro, in mente., pages 223–239. Birkhauser, Boston, 1998.
[35] Modeling multicellular systems using subcellular elements Math. Biosci. Eng. 2005 611 622
[36] Vascular sprout formation entails tissue deformations and ve-cadherin-dependent cell-autonomous motility Dev. Biol. 2008 545 55
, ,[37] Cell migration: integrating signals from front to back Science 2003 1704 1709
, , , , , , ,[38] Diffusion and deformations of single hydra cells in cellular aggregates Biophys J. 2000 1903 14
, , , ,[39] alphavbeta3 integrin-dependent endothelial cell dynamics in vivo Development 2004 2887 97
, ,[40] Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels J. Cell Biol. 2002 1083 1091
,[41] Cell motility as persistent random motion: theories from experiments Biophys J. 2005 912 31
, , , ,[42] Modeling the early stages of vascular network assembly EMBO J. 2003 1771 9
, , , , ,[43] Migration of individual microvessel endothelial cells: stochastic model and parameter measurement J. Cell Sci. 1991 419 30
, ,[44] A. Szabó, R. Ünnep, E. Méhes, W. Twal, S. Argraves, Y. Cho, A. Czirók. Collective cell motion in endothelial monolayers. (preprint)
[45] Multicellular sprouting in vitro Biophys J. 2008 2702 2710
, , ,[46] Network formation of tissue cells via preferential attraction to elongated structures Phys. Rev. Lett. 2007
, ,[47] In vivo evidence for short- and long-range cell communication in cranial neural crest cells Development 2004 6141 6151
,[48] A mechanosensory complex that mediates the endothelial cell response to fluid shear stress Nature 2005 426 431
, , , , , , , ,[49] Anomalous diffusion and non-gaussian velocity distribution of hydra cells in cellular aggregates Physica A 2001 549 558
, , ,[50] Self-polarization and directional motility of cytoplasm Curr. Biol. 1999 11 20
, ,Cité par Sources :