On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 56-83.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we propose a computational model to investigate the coupling between cell’s adhesions and actin fibres and how this coupling affects cell shape and stability. To accomplish that, we take into account the successive stages of adhesion maturation from adhesion precursors to focal complexes and ultimately to focal adhesions, as well as the actin fibres evolution from growing filaments, to bundles and finally contractile stress fibres.We use substrates with discrete patterns of adhesive patches, whose inter-patches distance can be modulated in order to control the location of the adhesions and the resulting fibres architecture. We then investigate the emergence of stable cell morphologies as a function of the inter-patches distance, for two different cell phenotypes generated from the model. Force generated by the stress fibres on the focal adhesions and specifically the influence of the cell contractility are also investigated.Our results suggest that adhesion lifetime and fibre growing rate are the key parameters in the emergence of stable cell morphologies and the limiting factors for the magnitude of the mean tension force from the fibres on the focal adhesions.
DOI : 10.1051/mmnp/20105103

C. Franco 1 ; T. Tzvetkova-Chevolleau 2 ; A. Stéphanou 1, 2

1 Laboratoire TIMC-IMAG, Equipe DynaCell, UMR CNRS 5525, Institut d’Ingénierie et de l’Information de Santé (In3S), Pavillon Taillefer, Faculté de Médecine de Grenoble, 38706 La Tronche Cedex, France
2 LTM, UMR CNRS 5129, c/o CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 9, France
@article{MMNP_2010_5_1_a3,
     author = {C. Franco and T. Tzvetkova-Chevolleau and A. St\'ephanou},
     title = {On the {Influence} of {Discrete} {Adhesive} {Patterns} for {Cell} {Shape} and {Motility:} {A} {Computational} {Approach}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {56--83},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2010},
     doi = {10.1051/mmnp/20105103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105103/}
}
TY  - JOUR
AU  - C. Franco
AU  - T. Tzvetkova-Chevolleau
AU  - A. Stéphanou
TI  - On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 56
EP  - 83
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105103/
DO  - 10.1051/mmnp/20105103
LA  - en
ID  - MMNP_2010_5_1_a3
ER  - 
%0 Journal Article
%A C. Franco
%A T. Tzvetkova-Chevolleau
%A A. Stéphanou
%T On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach
%J Mathematical modelling of natural phenomena
%D 2010
%P 56-83
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105103/
%R 10.1051/mmnp/20105103
%G en
%F MMNP_2010_5_1_a3
C. Franco; T. Tzvetkova-Chevolleau; A. Stéphanou. On the Influence of Discrete Adhesive Patterns for Cell Shape and Motility: A Computational Approach. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 56-83. doi : 10.1051/mmnp/20105103. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105103/

[1] I. Bischofs, F. Klein, D. Lehnert, M. Bastmeyer, U. Schwarz Filamentous network mechanics and active contractility determine cell and tissue shape Biophys. J 2008 3488 3496

[2] M. Block, C. Badowski, A. Millon-Fremillon, D. Bouvard, A. Bouin, E. Faurobert, D. Gerber-Scokaert, E. Planus, C. Albigès-Rizo Podosome type adhesions and focal adhesions, so alike and yet so different Eur. J. Cell Biol. 2008 491 506

[3] J. Broussard, D. Webb, I. Kaverina Asymmetric focal adhesion disassembly in motile cells Curr. Opin. Cell Biol. 2008 85 90

[4] H. Coskun, Y. Li, M. Mackey Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data J. Theor. Biol. 2007 169 179

[5] V. Deshpande≫, R. Mcmeeking, A. Evans A bio-chemo-mechanical model for cell contractility PNAS 2006 14015 14020

[6] V. Deshpande≫, R. Mcmeeking, A. Evans A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation Proc. R. Soc. A 2007 787 815

[7] A. Efimov, N. Schiefermeier, I. Grigoriev, M. Brown, C. Turner, J. Small, I. Kaverina Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites J. Cell Sci. 2008 196 204

[8] A. Engler, S. Sen, H. Sweeney, D. Discher Matrix Elasticity Directs Stem Cell Lineage Specification Cell 2006 677 689

[9] P. Friedl, K. Wolf Tumour-cell invasion and migration: diversity and escape mechanisms Nat. Rev. Cancer 2003 362 374

[10] C. Galbraith, K. Yamada, M. Sheetz The relationship between force and focal complex development J. Cell Biol. 2002 695 705

[11] B. Geiger, J. Spatz, A. Bershadsky Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 2009 21 33

[12] G. Giannone, B. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. Dobereiner, Y. Freund, G. Borisy, M. Sheetz Lamellipodial actin mechanically links myosin activity with adhesion-site formation Cell 2007 561 575

[13] H. Guillou, A. Depraz-Depl, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, M. Block Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling Exp. Cell Res. 2008 478 488

[14] P. Hotulainen, P. Lappalainen Stress fibers are generated by two distinct actin assembly mechanisms in motile cells J. Cell Biol. 2006 383 394

[15] J. James, E. Goluch, H. Hu, C. Liu, M. Mrksich Subcellular Curvature at the Perimeter of Micropatterned Cells Influences Lamellipodial Distribution and Cell Polarity Cell Motil. Cytoskeleton 2008 841 852

[16] G. Jiang, A. Huang, Y. Cai, M. Tanase, M. Sheetz Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα Biophys. J. 2006 1804 1809

[17] R. Kaunas, H. Hsu A kinematic model of stretch-induced stress fiber turnover and reorientation J. Theor. Biol. 2009 320 330

[18] E. Kuusela, W. Alt Continuum model of cell adhesion and migration J. Math. Biol. 2009 135 161

[19] K. Lazopoulos, D. Stamenovic A mathematical model of cell reorientation in response to substrate stretching Mol. Cell. Biomech. 2006

[20] J. Lock, B. Wehrle-Haller, S. Strömblad Cell–matrix adhesion complexes: master control machinery of cell migration International Journal of Solids and Structures 2008 65 76

[21] Y. Luo, X. Xu, T. Lele, S. Kumar, D. Ingber A multi-modular tensegrity model of an actin stress fiber J. Biomech. 2008 2379 2387

[22] P. Naumanen, P. Lappalainen, P. Hotulainen Mechanisms of actin stress fibre assembly J. Microsc. 2008 446 454

[23] A. Pathak, V. Deshpande, R. Mcmeeking, A. Evans The simulation of stress fibre and focal adhesion development in cells on patterned substrates J. R. Soc. Interface 2008 507 524

[24] S. Pellegrin, H. Mellor Actin stress fibres J. Cell Sci. 2007 3491 3499

[25] R. Rid, N. Schiefermeier, I. Grigoriev, J. Small, I. Kaverina The Last but not the Least: The Origin and Significance of Trailing Adhesions in Fibroblastic Cells Cell Motil. Cytoskeleton 2005 161 171

[26] A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, B. Ladoux Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates PNAS 2007 8281 8286

[27] Y. Senju, H. Miyata The role of actomyosin contractility in the formation and dynamics of actin bundles during fibroblasts spreading J. Biochem. 2008 137 150

[28] J. Small, S. Auinger, M. Nemethova, S. Koestler, K. Goldie, A. Hoenger, G. Resch Unravelling the structure of the lamellipodium J. Microsc. 2008 479 485

[29] D. Stamenovic Contractile torque as a steering mechanism for orientation of adherent cells Mol. Cell. Biomech. 2005

[30] A. Stéphanou. A computational framework integrating cytoskeletal and adhesion dynamics for modelling cell motility. Cell Mechanics, From Single Scale-Based Models to Multiscale Modeling. Chapman Hall / CRC Press, Ed. A. Chauvire, L.Preziosi C. Verdier, 2009.

[31] A. Stéphanou, M. Chaplain, P. Tracqui A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts Bull. Math. Biol. 2004 1119 1154

[32] A. Stéphanou, E. Mylona, M. Chaplain, P. Tracqui A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions J. Theor. Biol. 2008 701 716

[33] J. Tan, J. Tien, D. Pirone, D. Gray, K. Bhadriraju, C. Chen Cells lying on a bed of microneedles: an approach to isolate mechanical force PNAS 2003 1484 1489

[34] M. Théry, A. Pépin, E. Dressaire, Y. Chen, M. Bornens Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment Cell Motil. Cytoskeleton 2006 341 355

[35] T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. Schiavone, P. Tracqui The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure Biomaterials 2008 1541 1551

[36] M. Vicente-Manzanares, C. Choi, A. Horwitz Integrins in cell migration-the actin connection J. Cell Sci. 2009 199 206

[37] H. Wolfenson, Y. Henis, B. Geiger, A. Bershadsky The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions Cell Motil. Cytoskeleton 2009 1017 1029

[38] D. Worth, M. Parsons Adhesion dynamics: Mechanisms and measurements Int. J. Biochem. Cell Biol. 2008 2397 2409

[39] R. Zaidel-Bar, C. Ballestrem, Z. Kam, B. Geiger Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells J. Cell Sci. 2003 4605 4613

[40] R. Zaidel-Bar, M. Cohen, L. Addadi, B. Geiger Hierarchical assembly of cell-matrix adhesion complexes Biochem. Soc. Trans. 2004 416 420

[41] R. Zaidel-Bar, S. Itzkovitz, A. Ma’Ayan, R. Iyengar, B. Geiger Functional atlas of the integrin adhesome Nat. Cell Biol. 2007 858 867

Cité par Sources :