Seasonality, Climate Cycles and Body Size Evolution
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 135-155.

Voir la notice de l'article provenant de la source EDP Sciences

The seasonality hypothesis states that climates characterized by large annual cycles select for large body sizes. In order to study the effects of seasonality on the evolution of body size, we use a model that is based on physiological rules and first principles. At the ecological time scale, our model results show that both larger productivity and seasonality may lead to larger body sizes. Our model is the first dynamic and process-based model to support the seasonality hypothesis and hence demonstrates the importance of basing models on physiological processes. We focus not only on variability at the ecological time scale, but also on the temporal variations in seasonality existing at geological time scales. A particularly strong forcing of seasonality exists on the scale of 20,000-400,000 years, the scale of Milankovitch cycles. Therefore, we simulated the evolutionary response of body size to a Milankovitch-type of forcing of climate and food density. Results illustrate that for a given level of investment in reserves body size may track climatic cycles, and that below a certain seasonality threshold the body size will decrease rapidly, leading to extinction.
DOI : 10.1051/mmnp/20094605

T. A. Troost 1 ; J. A. van Dam 2, 3 ; B. W. Kooi 4 ; E. Tuenter 5

1 Deltares, Department of Ecosystem Analysis and Assessment, Rotterdamseweg 185, 2600 MH Delft, The Netherlands
2 Faculty of Earth and Life Sciences, Dept. of Paleoclimatology and Geomorphology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
3 Institut Catala de Paleontologia (ICP), Campus de la UAB, Modul ICP, E-08193 Cerdanyola del Valles, Spain
4 Faculty of Earth and Life Sciences, Dept. of Theoretical Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
5 Institute for Marine and Atmospheric research Utrecht (IMAU), Princetonplein 5, 3584 CC Utrecht, The Netherlands
@article{MMNP_2009_4_6_a4,
     author = {T. A. Troost and J. A. van Dam and B. W. Kooi and E. Tuenter},
     title = {Seasonality, {Climate} {Cycles} and {Body} {Size} {Evolution}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {135--155},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {2009},
     doi = {10.1051/mmnp/20094605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094605/}
}
TY  - JOUR
AU  - T. A. Troost
AU  - J. A. van Dam
AU  - B. W. Kooi
AU  - E. Tuenter
TI  - Seasonality, Climate Cycles and Body Size Evolution
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 135
EP  - 155
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094605/
DO  - 10.1051/mmnp/20094605
LA  - en
ID  - MMNP_2009_4_6_a4
ER  - 
%0 Journal Article
%A T. A. Troost
%A J. A. van Dam
%A B. W. Kooi
%A E. Tuenter
%T Seasonality, Climate Cycles and Body Size Evolution
%J Mathematical modelling of natural phenomena
%D 2009
%P 135-155
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094605/
%R 10.1051/mmnp/20094605
%G en
%F MMNP_2009_4_6_a4
T. A. Troost; J. A. van Dam; B. W. Kooi; E. Tuenter. Seasonality, Climate Cycles and Body Size Evolution. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 135-155. doi : 10.1051/mmnp/20094605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094605/

[1] K. G. Ashton. Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution, (2001), 55(12):2523–2533.

[2] M. S. Boyce Oecologia 1978 1 19

[3] M. S. Boyce The American Naturalist 1979 569 583

[4] S. L. Chown, C. J. Klok Ecography 2003 445 455

[5] D. Cohen, H. Parnas J. theor. Biol. 1976 1 18

[6] C. R. Dickman, P. S. Mahon, P. Masters, D. F Gibson Wildlife Research 1999 389 403

[7] U. Dieckmann Trends in Ecology and Evolution 1997 128 131

[8] U. Dieckmann, R. Law J. Math. Biol. 1996 579 612

[9] R. L. Dunsbrack, M. A. Ramsay OIKOS 1993 336 342

[10] S. H. Ferguson Global Ecology and Biogeography 2002 303 312

[11] N. R. French, D. M. Stoddart, B. Bobek. Patterns of demography in small mammal populations. In F. B. Golley, K. Petrusewicz, and L. Ryszkowski, editors, Small mammals: their productivity and population dynamics, pages 73–102. Cambridge University Press, Cambridge, 1975.

[12] S. A. H. Geritz, É. Kisdi, G. Meszéna, J. A. J. Metz Evolutionary Ecology 1998 35 57

[13] S. A. H. Geritz, J. A. J. Metz, É. Kisdi, G. Meszéna Physical Review Letters 1997 2024 2027

[14] S. A. H. Geritz, E. Van Der Meijden, J. A. J. Metz Theoretical Population Biology 1999 324 343

[15] J. D. Hays, J. Imbrie, N. J. Shackleton Science 1976 1121 1132

[16] F. J. Hilgen, W. Krijgsman, C. G. Langereis Earth Planet. Sci. Lett. 1995 496 510

[17] K. L. Kirk. Life-history responses to variable environments: starvation and reproduction in planctonic rotifers. Ecology, (1997), 78(2):434–441.

[18] B. W. Kooi, S. A. L. M. Kooijman. Population dynamics of rotifers in chemostats. Nonlinear Analysis, Theory, Methods Applications, 30 (1997), No. 3, 1687–1698.

[19] B. W. Kooi, S. A. L. M. Kooijman Theoretical Population Biology 1999 91 105

[20] B. W. Kooi, T. A. Troost Theoretical Population Biology 2006 527 541

[21] S. A. L. M. Kooijman. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 2000.

[22] J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, B. Levrard Astronomy & Astrophysics 2004 261 285

[23] S. M. Lehman, M. Mayor, P. C. Wright American Journal of Physical Anthropology 2005 318 328

[24] H. Lieth Human Ecology 1973 303 332

[25] M. Lima, J. E. Keymer, F. M. Jaksic The American Naturalist 1999 476 491

[26] C. C. Lindsey Evolution 1966 456 465

[27] S. L. Lindstedt, M. S. Boyce The American Naturalist 1985 873 878

[28] T. Madson, R. Shine Austral Ecology 1999 80 89

[29] S. Meiri, T. Dayan, D. Simberloff Journal of Biogeography 2005 369 375

[30] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S. J. van Strien, S. M. Verduyn Lunel, editors, Stochastic and spatial structures of dynamical systems, pages 183–231. North-Holland, Amsterdam, 1996.

[31] J. A. J. Metz, S. A. H. Geritz, R. M. Nisbet Trends in Ecology & Evolution 1992 198 202

[32] Milankovitch. Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Spec. Publ., 133 (1941), 1–633.

[33] E. B. Muller, R. M. Nisbet Bulletin of Mathematical Biology 2000 1163 1189

[34] P. E. Olsen, D. V. Kent Phil. Trans. R. Soc. Lond. (A) 1999 1761 1784

[35] H. Parnas, D. Cohen J. theor. Biol. 1976 19 55

[36] R. H. Peters. The Ecological Implications of Body Size. Cambridge University Press, New York, 1983.

[37] M. Predavec Wildlife Research 1994 569 582

[38] K. W. Shertzer, S. P. Ellner J. theor. Biol. 2002 183 200

[39] F. A. Smith, J. L. Betancourt, J. H. Brown Science 1995 2012 2014

[40] N. C. Stenseth, H. Leirs, A. Skonhoft, S. A. Davis, R. P. Pech, H. P. Andreassen, G. R. Singleton, M. Lima, R. S. Machang'U, R. H. Makundi, Z. B. Zhang, P. R. Brown, D. Z. Shi, X. R. Wan Frontiers in Ecology and the Environment 2003 367 375

[41] T. A. Troost, B. W. Kooi, U. Dieckmann Evolutionary Ecology 2008 771 799

[42] T. A. Troost, B. W. Kooi, S. A. L. M. Kooijman. Bifurcation analysis of ecological and evolutionary processes in ecosystems. Ecological Modelling, 204 (2007), No. 1/2, 253–268.

[43] I. M. M. Van Leeuwen, F. D. L. Kelpin, S. A. L. M. Kooijman Biogerontology 2002 373 381

[44] J. D. Wigginton, F. S. Dobson Canadian Journal of Zoology 1999 802 813

Cité par Sources :