Bacteriophage Infection Dynamics: Multiple Host Binding Sites
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 109-134.

Voir la notice de l'article provenant de la source EDP Sciences

We construct a stochastic model of bacteriophage parasitism of a host bacteria that accounts for demographic stochasticity of host and parasite and allows for multiple bacteriophage adsorption to host. We analyze the associated deterministic model, identifying the basic reproductive number for phage proliferation, showing that host and phage persist when it exceeds unity, and establishing that the distribution of adsorbed phage on a host is binomial with slowly evolving mean. Not surprisingly, extinction of the parasite or both host and parasite can occur for the stochastic model.
DOI : 10.1051/mmnp/20094604

H. L. Smith 1 ; R. T. Trevino 1

1 School of Mathematical and Statistical Sciences, Arizona State University, 85287 Tempe, AZ, USA
@article{MMNP_2009_4_6_a3,
     author = {H. L. Smith and R. T. Trevino},
     title = {Bacteriophage {Infection} {Dynamics:} {Multiple} {Host} {Binding} {Sites}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {109--134},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {2009},
     doi = {10.1051/mmnp/20094604},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094604/}
}
TY  - JOUR
AU  - H. L. Smith
AU  - R. T. Trevino
TI  - Bacteriophage Infection Dynamics: Multiple Host Binding Sites
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 109
EP  - 134
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094604/
DO  - 10.1051/mmnp/20094604
LA  - en
ID  - MMNP_2009_4_6_a3
ER  - 
%0 Journal Article
%A H. L. Smith
%A R. T. Trevino
%T Bacteriophage Infection Dynamics: Multiple Host Binding Sites
%J Mathematical modelling of natural phenomena
%D 2009
%P 109-134
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094604/
%R 10.1051/mmnp/20094604
%G en
%F MMNP_2009_4_6_a3
H. L. Smith; R. T. Trevino. Bacteriophage Infection Dynamics: Multiple Host Binding Sites. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 109-134. doi : 10.1051/mmnp/20094604. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094604/

[1] E. Beretta, Y. Kuang. Modeling and analysis of a marine bacteriophage infection. Math. Biosci., 149(1998), 57–76.

[2] B.J.M. Bohannan and R.E. Lenski. Effect of prey heterogeneity on the response of a model food chain to resource enrichment. The American Nat., 153(1999), 73–82.

[3] B.J.M. Bohannan and R.E. Lenski. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(2000), 362–377.

[4] B.J. Cairns, A.R. Timms, V.A.A. Jansen. I.F. Connerton, R.J.H. Payne, Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLOS Pathogens, 5(2009), e1000253.

[5] A. Campbell. Conditions for existence of bacteriophages. Evolution, 15(1961), 153–165.

[6] M. Carletti. Mean-square stability of a stochastic model for bacteriophage infection with time delays. Mathematical Biosciences, 210(2007), 395-414.

[7] J. Carr. Applications of centre manifold theory. Springer-Verlag, New York, 1981.

[8] P. DeLeenheer and H.L. Smith. Virus dynamics: a global analysis. SIAM J. Appl. Math., 63(2003), 1313–1327.

[9] M. De Paepe and F. Taddei. Viruses' life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLOS Biol., 4(2006), 1248–1256.

[10] E. Ellis and M. Delbrück. The growth of bacteriophage. J. of Physiology, 22(1939), 365–384.

[11] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81 (1977), No. 25, 2340–2361, 1977.

[12] Y. Cao, D. Gillespie, L. Petzold J. Chem. Physics 2005 014116

[13] P. Grayson, L. Han, T. Winther, R. Phillips PNAS 2007 14652 57

[14] B. Levin, F. Stewart, L. Chao, Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Nat., 111 (1977), 3–24.

[15] R. Lenski and B. Levin. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities, Amer. Nat., 125 (1985), No. 4, 585–602.

[16] B. Levin, J. Bull Amer. Nat. 1996 881 898

[17] B. Levin, J. Bull Nature Reviews Microbiology 2004 166 173

[18] M. Kretzschmar, F. Adler Theor. Pop. Biol. 1993 1 30

[19] A.P. Krueger J. Gen. Physiol. 1931 493 516

[20] S. Matsuzaki, M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi, S. Imai, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11(2005), 211–219.

[21] M.A. Nowak and R.M. May. Virus dynamics. Oxford University Press, New York, 2000.

[22] R. Payne, V. Jansen J. Theor. Biol. 2001 37 48

[23] R. Payne, V. Jansen Clin. Pharmacokinetics 2003 315 325

[24] A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 (1999), 3–44.

[25] H.L. Smith SIAM J. Appl. Math. 2008 1717 1737

[26] S.J. Schrag, J.E. Mittler Amer. Nat. 1996 348 377

[27] G. Stent. Molecular biology of bacterial viruses. W.H. Freeman and Co., London, 1963.

[28] H. R. Thieme SIAM J. Math. Anal. 1993 407 435

[29] H.R. Thieme, J. Yang Elect. J. Diff. Eqns. 2000 255 283

[30] R. Weld, C. Butts, J. Heinemann J. Theor. Biol. 2004 1 11

[31] X.-Q. Zhao. Dynamical systems in population biology. CMS Books in Mathematics, Springer, 2003.

Cité par Sources :