Feeding Threshold for Predators Stabilizes Predator-Prey Systems
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 91-108.

Voir la notice de l'article provenant de la source EDP Sciences

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical Rosenzweig-MacArthur (RM) model with an adapted Holling type-II functional response to include a feeding threshold. This mathematical model can be studied using analytical tools, which gives insight into the mathematical properties of the two dimensional ode system and reveals underlying stabilisation mechanisms. The second model is a mass-balance (MB) model for a predator-prey-nutrient system with complete recycling of the nutrient in a closed environment. In this model a feeding threshold is also taken into account for the predator-prey trophic interaction. Numerical bifurcation analysis is performed on both models. Analysis results are compared between models and are discussed in relation to the analytical analysis of the classical RM model. Experimental data from the literature of a closed system with ciliates, algae and a limiting nutrient are used to estimate parameters for the MB model. This microbial system forms the bottom trophic levels of aquatic ecosystems and therefore a complete overview of its dynamics is essential for understanding aquatic ecosystem dynamics.
DOI : 10.1051/mmnp/20094603

D. Bontje 1 ; B. W. Kooi 1 ; G. A.K. van Voorn 2 ; S.A.L.M Kooijman 1

1 Department of Theoretical Biology, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
2 Biometris, Wageningen Universiteit & Research, 6708PB Wageningen, The Netherlands
@article{MMNP_2009_4_6_a2,
     author = {D. Bontje and B. W. Kooi and G. A.K. van Voorn and S.A.L.M Kooijman},
     title = {Feeding {Threshold} for {Predators} {Stabilizes} {Predator-Prey} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {2009},
     doi = {10.1051/mmnp/20094603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094603/}
}
TY  - JOUR
AU  - D. Bontje
AU  - B. W. Kooi
AU  - G. A.K. van Voorn
AU  - S.A.L.M Kooijman
TI  - Feeding Threshold for Predators Stabilizes Predator-Prey Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 91
EP  - 108
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094603/
DO  - 10.1051/mmnp/20094603
LA  - en
ID  - MMNP_2009_4_6_a2
ER  - 
%0 Journal Article
%A D. Bontje
%A B. W. Kooi
%A G. A.K. van Voorn
%A S.A.L.M Kooijman
%T Feeding Threshold for Predators Stabilizes Predator-Prey Systems
%J Mathematical modelling of natural phenomena
%D 2009
%P 91-108
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094603/
%R 10.1051/mmnp/20094603
%G en
%F MMNP_2009_4_6_a2
D. Bontje; B. W. Kooi; G. A.K. van Voorn; S.A.L.M Kooijman. Feeding Threshold for Predators Stabilizes Predator-Prey Systems. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 6, pp. 91-108. doi : 10.1051/mmnp/20094603. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094603/

[1] P. A. Abrams, H. Matsuda. Prey adaptation as a cause of predator-prey cycles. Evolution, 51 (1997),1742–1750.

[2] P. A. Abrams, C. J. Walters Ecology 1996 1125 1133

[3] J. R. Beddington J. Anim. Ecol. 1975 331 340

[4] A. A. Berryman, B. A. Hawkins Oikos 2006 192 196

[5] D. Bontje, B. W. Kooi, M. Liebig, S. A. L. M. Kooijman Water Research 2009 3292 3300

[6] W. Brack, J. Bakker, E. De Deckere, C Deerenberg, J. Van Gils, M Hein, P Jurajda, S. Kooijman, M. Lamoree, S. Lek, M.-J. López De Environmental Science & Pollution Research 2005 252 256

[7] D. L. DeAngelis. Dynamics of Nutrient Cycling and Food Webs. Number 9 in Population and Community Biology series. Chapman Hall, London (1992).

[8] D. L. Deangelis, R. A. Goldstein, R. V. O'Neill Ecology 1975 881 892

[9] V. Grimm, C. Wissel Oecologia 1997 323 334

[10] T. Gross, W. Ebenhöh, U. Feudel J. Theor. Biol. 2004 349 358

[11] V. A. A. Jansen Oikos 1995 384 390

[12] K. L. Kirk Ecology 1998 2456 2462

[13] B. W. Kooi Acta Biotheoretica 2003 189 222

[14] B. W. Kooi, J. C. Poggiale, P. Auger, S. A. L. M. Kooijman Ecological Modelling 2002 69 86

[15] M. Kretzschmar, R. M. Nisbet, E Mccauley Theor. Popul. Biol. 1993 32 66

[16] M Kuwamura, T Nakazawa, T Ogawa Journal of Mathematical Biology 2009 459 479

[17] M. Liebig, G. Schmidt, D. Bontje, B. W. Kooi, G. Streck, W. Traunspurger, T. Knacker Aquatic Toxicology 2008 102 110

[18] Maplesoft. Maple. Maplesoft, Waterloo, Ontario, Canada (2003).

[19] A. Mitra, K. J. Flynn The American Naturalist 2007 632 646

[20] A. M. Mood, F. A. Graybill, D. C. Boes. Introduction to the Theory of Statistics. McGraw-Hill, Inc., New York, 3th edition (1974).

[21] H. Müller, A. Schlegel Aquat. Microb. Ecol. 1999 49 60

[22] M. M. Mullin, E. F. Stewart, F. J. Fuglister Limnol. Oceanogr. 1975 259 262

[23] R. A. Park, J. S. Clough. Aquatox for windows: A modular fate and effects model for aquatic ecosystems. Technical Report 2, EPA (2004).

[24] R.A. Park, J. S. Clough, M. C. Wellman Ecological Modelling 2008 1 15

[25] S. Petrovskii Ecol. Complex. 2004 37 47

[26] H. W. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, 2nd edition (1992).

[27] M. L. Rosenzweig, R. H. Macarthur The American Naturalist 1963 209 223

[28] A. Saage, O. Vadstein, U. Sommer Journal of Sea Research 2009 16 21

[29] M. Scheffer, R. J. De Boer Ecology 1995 2270 2277

[30] S. L. Strom, C. B. Miller, B. W. Frost Marine Ecology Progress Series 2000 19 31

[31] G. A. K. Van Voorn, D. Stiefs, T. Gross, B. W. Kooi, U. Feudel, S. A. L. M. Kooijman. Stabilization due to predator interference: comparison of different analysis approaches. Mathematical Biosciences and Engineering, 5 (2008), No. 3,:567–583.

[32] M. Vos, B. W. Kooi, D. L. Deangelis, W. M. Mooij Oikos 2004 471 480

[33] T. Weisse, N. Karstens, V.C.L. Meyer, L. Janke, S. Lettner, K. Teichgräber. Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquatic Microbial Ecology, 26 (2001),167–179.

[34] T. Weisse, B Kirchhoff Aquat. Microb. Ecol. 1997 153 164

Cité par Sources :