Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 5, pp. 128-143.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we deal with the design of the robust feedback control of wastewater treatment system, namely the activated sludge process. This problem is formulated by a nonlinear ordinary differential system. On one hand, we develop a robust analysis when the specific growth function of the bacterium μ is not well known. On the other hand, when also the substrate concentration in the feed stream sin is unknown, we provide an observer of system and propose a design of robust feedback control in term of recycle rate, in order to keep the pollutant concentration lower than an allowed maximum level sd.
DOI : 10.1051/mmnp/20094509

M. Serhani 1 ; N. Raissi 2 ; P. Cartigny 3

1 FSJES, University My Ismail, B.P. 3102, Toulal, Meknes, Morocco
2 EIMA, FS, University Ibn Tofail, B.P. 133, Kénitra, Morocco
3 GREQAM, University la Méditerranée, 2 rue de la Charité, 13002 Marseille, France
@article{MMNP_2009_4_5_a9,
     author = {M. Serhani and N. Raissi and P. Cartigny},
     title = {Robust {Feedback} {Control} {Design} for a {Nonlinear} {Wastewater} {Treatment} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {128--143},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {2009},
     doi = {10.1051/mmnp/20094509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/}
}
TY  - JOUR
AU  - M. Serhani
AU  - N. Raissi
AU  - P. Cartigny
TI  - Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 128
EP  - 143
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/
DO  - 10.1051/mmnp/20094509
LA  - en
ID  - MMNP_2009_4_5_a9
ER  - 
%0 Journal Article
%A M. Serhani
%A N. Raissi
%A P. Cartigny
%T Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model
%J Mathematical modelling of natural phenomena
%D 2009
%P 128-143
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/
%R 10.1051/mmnp/20094509
%G en
%F MMNP_2009_4_5_a9
M. Serhani; N. Raissi; P. Cartigny. Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 5, pp. 128-143. doi : 10.1051/mmnp/20094509. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/

[1] V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Application of a robust interval observer to an anaerobic digestion process. Developments in Chemical Engineering Mineral Processing, 13 (2005), No. 3/4, 267–278.

[2] V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Robust interval-based regulation for anaerobic digestion processes. Water Science and Technology, 52 (2005), No. 1-2, 449–456.

[3] J.F. Andrews Biotech. Bioeng. Symp. 1971 5 34

[4] J.F. Andrews. Dynamics and control of wastewater systems. Water quality management library, vol. 6, 1998.

[5] J.F. Busb, J.F. Andrews J. of Wat. Pollut. Control Fed. 1975 1055 1080

[6] C.R. Curds. Computer simulation of microbial population dynamics in the activated sludge process. Water Research 5 (1971), 1049–1066.

[7] D. Dochain, M. Perrier. Control design for nonlinear wastewater treatment processes. Wat. Sci. Tech. 11-12 (1993), 283–293.

[8] D. Dochain, M. Perrier. Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocess. T. Scheper (Ed.), Advances in Biochemical and Biotechnology, 56 (1997), Spring Verlag, Berlin, 147–197.

[9] C. Gómez-Quintero, I. Queinnec. Robust estimation for an uncertain linear model of an activated sludge process. Proc. of the IEEE Conference on Control Applications (CCA), Glasgow (UK), (2002), 18-20 december.

[10] M.Z. Hadj-Sadok, J.L. Gouzé J. of Process Control 2001 299 310

[11] B. Haegeman, C. Lobry, J. Harmand. Modeling bacteria flocculation as density-dependent growth. Aiche Journal, 53 (2007), No.2, 535–539.

[12] S. Marsili-Libelli Trans. Inst. Meas. Control 1984 146 152

[13] A. Martínez, C. Rodríguez, M.E. Vázquez-Méndez. Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. CONTROL OPTIM., Vol. 38 (2000), No. 5, 1534–1553.

[14] M.K. Rangla, K.J. Burnham, L. Coyle, R.I. Stephens. Simulation of activated sludge process control strategies. Simulation '98. International Conference on (Conf. Publ. No. 457), 30 Sep - 2 Oct (1998), 152–157.

[15] A. Rapaport, J. Harmand. Robust regulation of a class of partially observed nonlinear continuous bioreactors. J. of Process Control, 12 (2002), No. 2, 291–302.

[16] M. Serhani, J.L. Gouzé, N. Raïssi. Dynamical study and robustness for a nonlinear wastewater treatment model. Proceeding book “Systems Theory: Modeling, Analysis Control, FES2009”, Eds A. EL Jaï, L. Afifi E. Zerrik, PUP, ISBN 978-2-35412-043-6, pp. 571-578.

[17] H.L. Smith. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Matheatical society, 1995.

[18] H.L. Smith, P. Waltman. The theory of the chemostat. Cambridge University Press, Cambridge, 1995.

Cité par Sources :