Voir la notice de l'article provenant de la source EDP Sciences
M. Serhani 1 ; N. Raissi 2 ; P. Cartigny 3
@article{MMNP_2009_4_5_a9, author = {M. Serhani and N. Raissi and P. Cartigny}, title = {Robust {Feedback} {Control} {Design} for a {Nonlinear} {Wastewater} {Treatment} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {128--143}, publisher = {mathdoc}, volume = {4}, number = {5}, year = {2009}, doi = {10.1051/mmnp/20094509}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/} }
TY - JOUR AU - M. Serhani AU - N. Raissi AU - P. Cartigny TI - Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model JO - Mathematical modelling of natural phenomena PY - 2009 SP - 128 EP - 143 VL - 4 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/ DO - 10.1051/mmnp/20094509 LA - en ID - MMNP_2009_4_5_a9 ER -
%0 Journal Article %A M. Serhani %A N. Raissi %A P. Cartigny %T Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model %J Mathematical modelling of natural phenomena %D 2009 %P 128-143 %V 4 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/ %R 10.1051/mmnp/20094509 %G en %F MMNP_2009_4_5_a9
M. Serhani; N. Raissi; P. Cartigny. Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 5, pp. 128-143. doi : 10.1051/mmnp/20094509. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094509/
[1] V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Application of a robust interval observer to an anaerobic digestion process. Developments in Chemical Engineering Mineral Processing, 13 (2005), No. 3/4, 267–278.
[2] V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Robust interval-based regulation for anaerobic digestion processes. Water Science and Technology, 52 (2005), No. 1-2, 449–456.
[3] Biotech. Bioeng. Symp. 1971 5 34
[4] J.F. Andrews. Dynamics and control of wastewater systems. Water quality management library, vol. 6, 1998.
[5] J. of Wat. Pollut. Control Fed. 1975 1055 1080
,[6] C.R. Curds. Computer simulation of microbial population dynamics in the activated sludge process. Water Research 5 (1971), 1049–1066.
[7] D. Dochain, M. Perrier. Control design for nonlinear wastewater treatment processes. Wat. Sci. Tech. 11-12 (1993), 283–293.
[8] D. Dochain, M. Perrier. Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocess. T. Scheper (Ed.), Advances in Biochemical and Biotechnology, 56 (1997), Spring Verlag, Berlin, 147–197.
[9] C. Gómez-Quintero, I. Queinnec. Robust estimation for an uncertain linear model of an activated sludge process. Proc. of the IEEE Conference on Control Applications (CCA), Glasgow (UK), (2002), 18-20 december.
[10] J. of Process Control 2001 299 310
,[11] B. Haegeman, C. Lobry, J. Harmand. Modeling bacteria flocculation as density-dependent growth. Aiche Journal, 53 (2007), No.2, 535–539.
[12] Trans. Inst. Meas. Control 1984 146 152
[13] A. Martínez, C. Rodríguez, M.E. Vázquez-Méndez. Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. CONTROL OPTIM., Vol. 38 (2000), No. 5, 1534–1553.
[14] M.K. Rangla, K.J. Burnham, L. Coyle, R.I. Stephens. Simulation of activated sludge process control strategies. Simulation '98. International Conference on (Conf. Publ. No. 457), 30 Sep - 2 Oct (1998), 152–157.
[15] A. Rapaport, J. Harmand. Robust regulation of a class of partially observed nonlinear continuous bioreactors. J. of Process Control, 12 (2002), No. 2, 291–302.
[16] M. Serhani, J.L. Gouzé, N. Raïssi. Dynamical study and robustness for a nonlinear wastewater treatment model. Proceeding book “Systems Theory: Modeling, Analysis Control, FES2009”, Eds A. EL Jaï, L. Afifi E. Zerrik, PUP, ISBN 978-2-35412-043-6, pp. 571-578.
[17] H.L. Smith. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Matheatical society, 1995.
[18] H.L. Smith, P. Waltman. The theory of the chemostat. Cambridge University Press, Cambridge, 1995.
Cité par Sources :