A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 4, pp. 131-148.

Voir la notice de l'article provenant de la source EDP Sciences

Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to describe the interaction of two of the key morphogens: the activator and an activator-dependent inhibitor of precartilage condensation formation. A discontinuous Galerkin (DG) finite element method was applied to solve this nonlinear system on complex domains to study the effects of domain geometry on the pattern generated [Zhu et al., Application of Discontinuous Galerkin Methods for reaction-diffusion systems in developmental biology, Journal of Scientific Computing, 2009, v40, pp. 391-418]. In this paper, we extend these previous results and develop a DG finite element model in a moving and deforming domain for skeletal pattern formation in the vertebrate limb. Simulations reflect the actual dynamics of limb development and indicate the important role played by the geometry of the undifferentiated apical zone.
DOI : 10.1051/mmnp/20094405

J. Zhu 1 ; Y.-T. Zhang 1 ; S. A. Newman 2 ; M. S. Alber 1

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA
2 Department of Cell Biology and Anatomy, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
@article{MMNP_2009_4_4_a5,
     author = {J. Zhu and Y.-T. Zhang and S. A. Newman and M. S. Alber},
     title = {A {Finite} {Element} {Model} {Based} on {Discontinuous} {Galerkin} {Methods} on {Moving} {Grids} for {Vertebrate} {Limb} {Pattern} {Formation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2009},
     doi = {10.1051/mmnp/20094405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094405/}
}
TY  - JOUR
AU  - J. Zhu
AU  - Y.-T. Zhang
AU  - S. A. Newman
AU  - M. S. Alber
TI  - A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 131
EP  - 148
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094405/
DO  - 10.1051/mmnp/20094405
LA  - en
ID  - MMNP_2009_4_4_a5
ER  - 
%0 Journal Article
%A J. Zhu
%A Y.-T. Zhang
%A S. A. Newman
%A M. S. Alber
%T A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation
%J Mathematical modelling of natural phenomena
%D 2009
%P 131-148
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094405/
%R 10.1051/mmnp/20094405
%G en
%F MMNP_2009_4_4_a5
J. Zhu; Y.-T. Zhang; S. A. Newman; M. S. Alber. A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 4, pp. 131-148. doi : 10.1051/mmnp/20094405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094405/

[1] M. Alber, H.G.E. Hentschel, B. Kazmierczak, S.A. Newman J. Math. Anal. Appl. 2005 175 194

[2] M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, S.A. Newman Bulletin of Mathematical Biology 2008 460 483

[3] Y. Cheng, C.-W. Shu Mathematics of Computation 2008 699 730

[4] B. Cockburn, G. Karniadakis, C.-W. Shu. The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G. Karniadakis, and C.-W. Shu, Editors. Lecture Notes in Computational Science and Engineering, 11 (2000), Springer, 3–50.

[5] B. Cockburn, C.-W. Shu Journal of Scientific Computing 2001 173 261

[6] B. Cockburn, C.-W. Shu SIAM Journal on Numererical Analysis 1998 2440 2463

[7] H.G.E. Hentschel, T. Glimm, J.A. Glazier, S.A. Newman Proc. R. Soc. B 2004 1713 1722

[8] W. Hundsdorfer Mathematics of Computation 1998 1047 1062

[9] P.K. Kundu. Fluid Mechanics. Academic Press, Inc, London, 1990.

[10] D. Levy, C.-W. Shu, J. Yan Journal of Computational Physics 2004 751 772

[11] A. Madzvamuse, A.J. Wathen, P.K. Maini Journal of Computational Physics 2003 478 500

[12] A. Madzvamuse, P.K. Maini, A.J. Wathen J. Sci. Comput. 2005 247 262

[13] A. Madzvamuse Journal of Computational Physics 2006 239 263

[14] C.E. Nelson, B.A. Morgan, A.C. Burke, E. Laufer, E. Dimambro, L.C. Murtaugh, E. Gonzales, L. Tessarollo, L.F. Parada, C. Tabin Development 1996 1449 1466

[15] S.A. Newman, G.B. Müller. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304 (2005), No. 6, 593–609.

[16] S.A. Newman, R. Bhat Birth Defects Res C Embryo Today 2007 305 319

[17] S.A. Newman, S. Christley, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, M. Alber Curr. Top. Dev. Biol. 2008 311 340

[18] M.A. Ros, G.E. Lyons, S. Mackem, J.F. Fallon Dev. Biol. 1994 59 72

[19] G. Strang SIAM J. Numer. Anal. 1968 506 517

[20] D. Summerbell J. Embryol. Exp. Morphol. 1976 241 260

[21] T. Svingen, K.F. Tonissen Heredity 2006 88 96

[22] C. Tickle Dev. Cell 2003 449 458

[23] Y. Xu, C.-W. Shu Journal of Computational Mathematics 2004 250 274

[24] Y. Xu, C.-W. Shu Journal of Computational Physics 2005 72 97

[25] Y. Xu, C.-W. Shu Physica D 2005 21 58

[26] Y. Xu, C.-W. Shu Computer Methods in Applied Mechanics and Engineering 2006 3430 3447

[27] J. Yan, C.-W. Shu SIAM Journal on Numerical Analysis 2002 769 791

[28] J. Yan, C.-W. Shu Journal of Scientific Computing 2002 27 47

[29] J. Zhu, Y.-T. Zhang, S.A. Newman, M. Alber Journal of Scientific Computing 2009 391 418

[30] E. Zwilling Dev. Biol. 1964 20 37

Cité par Sources :