Multi-scale Modelling for Threshold Dependent Differentiation
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 4, pp. 103-117.

Voir la notice de l'article provenant de la source EDP Sciences

The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc, its threshold dependent differentiation, and feedback regulation on maintaining a stable stem cell population are investigated.
DOI : 10.1051/mmnp/20094403

A. Q. Cai 1, 2 ; Y. Peng 1, 2 ; J. Wells 3 ; X. Dai 3 ; Q. Nie 1, 2

1 Department of Mathematics, University of California, Irvine, USA
2 Center for Mathematical and Computational Biology, University of California, Irvine, USA
3 Department of Biological Chemistry, University of California, Irvine, USA
@article{MMNP_2009_4_4_a3,
     author = {A. Q. Cai and Y. Peng and J. Wells and X. Dai and Q. Nie},
     title = {Multi-scale {Modelling} for {Threshold} {Dependent} {Differentiation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {103--117},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2009},
     doi = {10.1051/mmnp/20094403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094403/}
}
TY  - JOUR
AU  - A. Q. Cai
AU  - Y. Peng
AU  - J. Wells
AU  - X. Dai
AU  - Q. Nie
TI  - Multi-scale Modelling for Threshold Dependent Differentiation
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 103
EP  - 117
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094403/
DO  - 10.1051/mmnp/20094403
LA  - en
ID  - MMNP_2009_4_4_a3
ER  - 
%0 Journal Article
%A A. Q. Cai
%A Y. Peng
%A J. Wells
%A X. Dai
%A Q. Nie
%T Multi-scale Modelling for Threshold Dependent Differentiation
%J Mathematical modelling of natural phenomena
%D 2009
%P 103-117
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094403/
%R 10.1051/mmnp/20094403
%G en
%F MMNP_2009_4_4_a3
A. Q. Cai; Y. Peng; J. Wells; X. Dai; Q. Nie. Multi-scale Modelling for Threshold Dependent Differentiation. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 4, pp. 103-117. doi : 10.1051/mmnp/20094403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094403/

[1] M. Abercrombie Proc. R. Soc. Lond. B. Biol. Sci. 1980 129 147

[2] I. Arnold, F. M. Watt Curr. Biol. 2001 558 568

[3] B. Basse, B. C. Baguley, E. S. Marshall, W. R. Joseph, B. Van Brunt, G. C. Wake, D. J. N. Wall J. Math. Biol. 2003 295 312

[4] S. Bernard, L. Pujo-Menjouet, M. C. Mackey Biophys. J. 2003 3414 3424

[5] B. Van Brunt, G. C. Wake, H. K. Kim European J. Appl. Math. 2001 625 644

[6] A. Q. Cai, K. A. Landman, B. D. Hughes, C. M. Witt. T cell development in the thymus: From periodic seeding to constant output. J. Theor. Biol., 249 (2007), No. 2, 384–394, 2007.

[7] E. Clayton, D. P. Doupé, A. M. Klein, D. J. Winton, B. D. Simons, P. H. Jones Nature 2007 185 189

[8] E. Fuchs, S. Raghavan Nat. Rev. Genet. 2002 199 209

[9] A. B. Glick, A. B. Kulkarni, T. Tennenbaum, H. Hennings, K. C. Flanders, M. O'Reily, M. B. Sporn, S. Karlsson, S. H. Yuspa Proc. Natl. Acad. Sci. USA 1993 6076 6080

[10] M. A. Hjortsø. Population balances in biomedical engineering: Segregation through the distribution of the cell states. McGraw-Hill, 2006.

[11] M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, S. J. Chapman Proc. Natl. Acad. Sci. USA 2008 4008 4013

[12] W.-C. Lo, C.-S. Chou, K. K. Gokoffski, F. Y.-M. Wan, A. D. Lander, A. L. Calof, Q. Nie Math. Biosci. Eng. 2008 59 82

[13] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model., 4 (2007), No. 26.

[14] M. Mangel, M. B. Bonsall. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability. PLoS one, 3 (2008), No. 2, e1591.

[15] N. V. Mantzaris Comput. Chem. Eng. 2005 631 643

[16] J. D. Murray. Mathematical biology, Vol. 1, New York: Springer, 2002.

[17] M. Nair, A. Teng, V. Bilanchone, A. Agrawal, B. Li, X. Dai J. Cell. Biol. 2006 253 264

[18] S. Pelengaris, T. Littlewood, M. Khan, G. Elia, G. Evan Mol. Cell 1999 565 577

[19] L. F. Shampine Appl. Num. Anal. Comp. Math. 2005 346 358

[20] I. P. Tomlinson, W. F. Bodmer Proc. Nat. Acad. Sci. USA 1995 11130 11134

[21] R. L. Waikel, Y. Kawachi, P. A. Waikel, X.-J. Wang, D. R. Roop Nat. Genet. 2001 165 168

[22] G. Wang J. Math. Biol. 2007 761 786

[23] F. M. Watt, M. Frye, S. A. Benitah Nat. Rev. Cancer 2008 234 242

[24] J. J. Willie Jr, M. R. Pittelkow, G. D. Shipley, R. E. Scott J. Cell. Physiol 1984 31 44

[25] A. Wilson, M. J. Murphy, T. Oskarsson, K. Kaloulis, M. D. Bettess, G. M. Oser, A.-C. Pasche, C. Knabenhans, H. R. Macdonald, A. Trumpp Genes. Dev 2004 2747 2763

Cité par Sources :