Voir la notice de l'article provenant de la source EDP Sciences
N. Bessonov 1, 2 ; F. Crauste 2 ; I. Demin 2 ; V. Volpert 2
@article{MMNP_2009_4_3_a8, author = {N. Bessonov and F. Crauste and I. Demin and V. Volpert}, title = {Dynamics of {Erythroid} {Progenitors} and {Erythroleukemia}}, journal = {Mathematical modelling of natural phenomena}, pages = {210--232}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2009}, doi = {10.1051/mmnp/20094309}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094309/} }
TY - JOUR AU - N. Bessonov AU - F. Crauste AU - I. Demin AU - V. Volpert TI - Dynamics of Erythroid Progenitors and Erythroleukemia JO - Mathematical modelling of natural phenomena PY - 2009 SP - 210 EP - 232 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094309/ DO - 10.1051/mmnp/20094309 LA - en ID - MMNP_2009_4_3_a8 ER -
%0 Journal Article %A N. Bessonov %A F. Crauste %A I. Demin %A V. Volpert %T Dynamics of Erythroid Progenitors and Erythroleukemia %J Mathematical modelling of natural phenomena %D 2009 %P 210-232 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094309/ %R 10.1051/mmnp/20094309 %G en %F MMNP_2009_4_3_a8
N. Bessonov; F. Crauste; I. Demin; V. Volpert. Dynamics of Erythroid Progenitors and Erythroleukemia. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 210-232. doi : 10.1051/mmnp/20094309. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094309/
[1] M. Adimy, and F. Crauste, Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay, Discrete Cont. Dyn. Syst. Ser. B 8 (2007), pp. 19–38.
[2] M. Adimy, F. Crauste, and A. El Abdllaoui, Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cells Dynamics with Several Delays, Math. Model. Nat. Phenom., 1 (2006), No. 2, pp. 1–22.
[3] M. Adimy, F. Crauste, and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), pp. 1328–1352.
[4] M. Adimy, F. Crauste, and S. Ruan, Periodic Oscillations in Leukopoiesis Models with Two Delays, J. Theor. Biol., 242 (2006), pp. 288–299.
[5] M. Adimy, F. Crauste, and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases, Bull. Math. Biol., 68 (2006), pp. 2321–2351.
[6] A.R.A. Anderson, K.A. Rejniak, P. Gerlee, and V. Quaranta, Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models, Math. Model. Nat. Phenom. 2 (2007), pp.1–27.
[7] A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H.M. Reichardt, P. Steinlein, G. Schutz, and H. Beug, The glucocorticoid receptor is required for stress erythropoiesis, Genes Dev. 13 (1999), pp. 2996–3002.
[8] J. Bélair, M.C. Mackey, and J.M. Mahaffy, Age-structured and two delay models for erythropoiesis, Math. Biosci. 128 (1995), pp. 317–346.
[9] S. Bernard, J. Bélair, and M.C. Mackey, Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol. 223 (2003), pp. 283–298.
[10] N. Bessonov, L. Pujo-Menjouet, and V. Volpert. Cell modelling of hematopoiesis. Math. Model. Nat. Phenom., 1 (2006), No. 2, pp. 81-103.
[11] N. Bessonov, I. Demin, L. Pujo-Menjouet, and V. Volpert. A multi-agent model describing self-renewal or differentiation effect of blood cell population. Mathematical and computer modelling, 49 (2009), pp. 2116-2127.
[12] D. Bonnet, Haematopoietic stem cells, Pathol. 197 (2002), pp. 430–440.
[13] V. Capasso, and D. Bakstein. An introduction to continuous-time stochastic processes. Birkhauser, Boston, 2005.
[14] C. Colijn, and M.C. Mackey, A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia, J. Theor. Biol. 237 (2005), pp. 117–132.
[15] C. Colijn, and M.C. Mackey, A mathematical model of hematopoiesis-II. Cyclical neutropenia, J. Theor. Biol. 237 (2005), pp. 133–146. erythropoiesis
[16] F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, and O. Gandrillon, Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis, J. Theor. Biol. 250 (2008), pp. 322–338.
[17] S. Dazy, F. Damiola, N. Parisey, H. Beug, and O. Gandrillon, The MEK-1/ ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells, Oncogene, 22 (2003), pp. 9205–9216.
[18] R. De Maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi, E. Pelosi, R. Riccioni, N. Felli, P. Samoggia, and C. Peschle, Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis, Blood, 93.3 (1999), pp. 796–803.
[19] I. Demin, F. Crauste, O. Gandrillon, and V. Volpert, A multi-scale model of erythropoiesis, Journal of Biological Dynamics (in press). DOI: 10.180/17513750902777642
[20] A. Ducrot, and V. Volpert. On a model of leukemia development with a spatial cell distribution. Math. Model. Nat. Phenom., 2 (2007), No. 3, 101-120.
[21] O. Gandrillon, U. Schmidt, H. Beug, and J. Samarut, TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism, EMBO J. 18 (1999), pp. 2764–2781.
[22] S. Huang, Y.-P.Guo, G. May, and T. Enver, Bifurcation dynamics in lineage-commitment in bipotent progenitor cells, Dev. biol. 305 (2007), pp. 695–713.
[23] M.J. Koury, and M.C. Bondurant, Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science, 248 (1990), pp. 378–381.
[24] C. Lacombe, and P. Mayeux, Biology of erythropoietin, Haematologica, 83 (1998), pp. 724–732.
[25] M. von Lindern, W. Zauner, G. Mellitzer, P. Steinlein, G. Fritsch, K. Huber, B. Löwenberg, and H. Beug, The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro, Blood, 94 (1999), pp. 550–559.
[26] M.C. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis, Blood, 51 (1978), pp. 941–956.
[27] F.M. Mazzella, C. Alvares, A. Kowal-Vern, and H.R. Schumacher, The acute erythroleukemias, Clin. Lab. Med., 20 (2000), pp. 119–37.
[28] V. Munugalavadla, and R. Kapur, Role of c-Kit and erythropoietin receptor in erythropoiesis, Critical Reviews in Oncology/Hematology, 54 (2005), pp. 63–75.
[29] J.D. Murray, Mathematical Biology, Springer, New York, 2004.
[30] B. Pain, C.M. Woods, J. Saez, T. Flickinger, M. Raines, S. Peyrol, C. Moscovici, M.G. Moscovici, H.J. Kung, P. Jurdic, et al., EGF-R as a hemopoietic growth factor receptor: the c-erbB product is present in normal chicken erythrocytic progenitor cells and controls their self-renewal, Cell, 65 (1991), pp. 37–46.
[31] J.C. Panetta, W.E. Evans, and M.H. Cheok, Mechanistic mathematical modeling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukemia cells, Br. Journal of Cancer, 94 (2006), pp. 93–100.
[32] L. Pujo-Menjouet, and M.C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia, C.R. Biol. 327 (2004), pp. 235–244.
[33] I. Roeder, and I. Glauche, Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors GATA-1 and PU.1, J. Theor. Biol. 241 (2006), pp. 852–865.
[34] C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J.C. Huber, A. Kolbus, and M. Baccarini, A balance between Raf-1 and Fas expression sets the place of erythroid differentiation, Blood, 108 (2006), pp. 152–159.
[35] J.E. Rubnitz, B. Gibson, and B.O. Smith, Acute myeloid leukemia, Pediatr. Clin. North. Am., 55 (2008), 1, pp. 21–51.
[36] E. Shochat, S.M. Stemmer, and L. Segel, Human haematopoiesis in steady state and following intense perturbations, Bull. Math. Biol., 64 (2002), pp. 861–886.
[37] U. Testa, Apoptotic mechanisms in the control of erythropoiesis, Leukemia, 18 (2004), pp. 1176–1199.
[38] W. Vainchenker, A. Dusa, and S.N. Constantinescu, JAKs in pathologies: Role of Janus kinases in hematopoietic malignancies and immunodeficiencies, Seminars in Cell and Developmental Biology, 19 (2008), pp. 385–393.
[39] V. Vainstein, Y. Ginosar, M. Shoham, D.O. Ranmar, A. Ianovski, and Z. Agur, The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model, J. Theor. Biol., 234 (2005), pp. 311-327.
[40] V. Vainstein, Y. Ginosar, M. Shoham, A. Ianovski, A. Rabinovich, Y. Kogan, V. Selitser, and Z. Agur, Improving Cancer Therapy by Doxorubicin and Granulocyte Colony-Stimulating Factor: Insights from a Computerized Model of Human Granulopoiesis, Math. Model. Nat. Phenom., Vol. 1, No. 2 (2006), pp. 70–80.
[41] A. Volpert, Vl. Volpert, Vit. Volpert. Travelling wave solutions of parabolic systems. AMS, Providence, 1994.
[42] F.M. Watt, and B.L. Hogan, Out of Eden: stem cells and their niches, Science, 287 (2000), pp. 1427–1430.
[43] I.L. Weissman, Stem cells: units of development, units of regeneration, and units in evolution, Cell 100 (2000), pp. 157–168.
Cité par Sources :