Voir la notice de l'article provenant de la source EDP Sciences
J. Clairambault 1, 2 ; S. Gaubert 3, 4 ; Th. Lepoutre 1, 5
@article{MMNP_2009_4_3_a7, author = {J. Clairambault and S. Gaubert and Th. Lepoutre}, title = {Comparison of {Perron} and {Floquet} {Eigenvalues} in {Age} {Structured} {Cell} {Division} {Cycle} {Models}}, journal = {Mathematical modelling of natural phenomena}, pages = {183--209}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2009}, doi = {10.1051/mmnp/20094308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094308/} }
TY - JOUR AU - J. Clairambault AU - S. Gaubert AU - Th. Lepoutre TI - Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models JO - Mathematical modelling of natural phenomena PY - 2009 SP - 183 EP - 209 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094308/ DO - 10.1051/mmnp/20094308 LA - en ID - MMNP_2009_4_3_a7 ER -
%0 Journal Article %A J. Clairambault %A S. Gaubert %A Th. Lepoutre %T Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models %J Mathematical modelling of natural phenomena %D 2009 %P 183-209 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094308/ %R 10.1051/mmnp/20094308 %G en %F MMNP_2009_4_3_a7
J. Clairambault; S. Gaubert; Th. Lepoutre. Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 183-209. doi : 10.1051/mmnp/20094308. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094308/
[1] Acta Biotheor. 1995 3 25
[2] O. Arino and M. Kimmel. Comparison of approaches to modeling of cell population dynamics. SIAM J. Appl. Math., 53(1993), No. 5, 1480–1504.
[3] J. Theor. Med. 1997 35 51
,[4] S. Bernard and H. Herzel. Why do cells cycle with a 24 hour period? Genome Inform., 17, (2006), No. 1, 72–79.
[5] Math. Comput. Modelling 2008 699 713
, ,[6] J. Math. Biol. 2008 91 110
, , ,[7] C. R. Math. Acad. Sci. Paris 2007 549 554
, ,[8] C. R. Acad. Sci. 2006 17 22
, ,[9] J. Clairambault, P. Michel, and B. Perthame. (2007) A mathematical model of the cell cycle and its circadian control, to appear in Mathematical modeling of Biological Systems, Volume I. A. Deutsch and L. Brusch and H. Byrne and G. de Vries and H.-P. Herzel (eds), Birkhäuser, pp 247–259 proceedings of ECMTB conference, Dresden 2005).
[10] R. Dautray and J.L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Springer, 1988.
[11] Mathematical Modelling of Natural Phenomena 2007 121 152
[12] E. Filipski, P.F. Innominato., M. Wu, X.M. Liand S. Iacobelli, L.J. Xian, and F. Levi. Effects of light and food schedules on liver and tumor molecular clocks in mice. Journal of the National Cancer Institute, 97 (April 2005), No. 7, 507–517, .
[13] E. Filipski, Verdun M King, X.M. Li, T. G. Granda, M. Mormont, XuHui Liu, B. Claustrat, M. H. Hastings, and F. Levi. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst, 94( May 2002), No 9, 690–697,.
[14] A. Goldbeter. A minimal cascade for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Nat. Acad. Sci. USA, 88 (October 1991), 9107–9111.
[15] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, New York, NY, USA, 1986.
[16] J. Keener and J. Sneyd. Mathematical Physiology, volume 8. Springer, 1998.
[17] Phil. Trans. R. Soc. A 2008 3575 3598
, , ,[18] Annu. Rev. Pharmacol. Toxicol. 2007 593 628
,[19] J.A.J. Metz and O. Diekmann. The dynamics of physiologically structured populations, volume 68 of L.N. in biomathematics. Springer, 1986.
[20] P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures et Appl., 84 (May 2005), No. 9, 1235–1260.
[21] D. O Morgan. The Cell Cycle. Primers in Biology. Oxford University Press, 2007.
[22] J.D. Murray. Mathematical Biology, volume 1. Springer, 3rd edition, 2002.
[23] B. Novak. Modeling the cell division cycle. Lund(Sweden), April 15-18 1999. Bioinformatics'99. Available online at: http://cellcycle.mkt.bme.hu/people/bnovak/pdfek/lund/talk.pdf.
[24] B. Perthame. Transport equations in biology. Birkhäuser, 2007.
[25] E. Seijo Solis. A report on the discretization of a one-phase model of the cell cycle. Inria internship report, INRIA, 2006.
[26] Nat. Rev. Mol. Cell Biol. 2001 908 916
, ,Cité par Sources :