Free Boundary Problems Associated with Multiscale Tumor Models
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 134-155.

Voir la notice de l'article provenant de la source EDP Sciences

The present paper introduces a tumor model with two time scales, the time t during which the tumor grows and the cycle time of individual cells. The model also includes the effects of gene mutations on the population density of the tumor cells. The model is formulated as a free boundary problem for a coupled system of elliptic, parabolic and hyperbolic equations within the tumor region, with nonlinear and nonlocal terms. Existence and uniqueness theorems are proved, and properties of the free boundary are established.
DOI : 10.1051/mmnp/20094306

A. Friedman 1

1 Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA
@article{MMNP_2009_4_3_a5,
     author = {A. Friedman},
     title = {Free {Boundary} {Problems} {Associated} with {Multiscale} {Tumor} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {134--155},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2009},
     doi = {10.1051/mmnp/20094306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094306/}
}
TY  - JOUR
AU  - A. Friedman
TI  - Free Boundary Problems Associated with Multiscale Tumor Models
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 134
EP  - 155
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094306/
DO  - 10.1051/mmnp/20094306
LA  - en
ID  - MMNP_2009_4_3_a5
ER  - 
%0 Journal Article
%A A. Friedman
%T Free Boundary Problems Associated with Multiscale Tumor Models
%J Mathematical modelling of natural phenomena
%D 2009
%P 134-155
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094306/
%R 10.1051/mmnp/20094306
%G en
%F MMNP_2009_4_3_a5
A. Friedman. Free Boundary Problems Associated with Multiscale Tumor Models. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 134-155. doi : 10.1051/mmnp/20094306. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094306/

[1] B.P. Ayati, G.F. Webb, A.R.A Anderson Multiscale Model. Simul. 2006 1 20

[2] H.M. Byrne MA J. Math. Appl. Med. Biol. 1997 305 323

[3] H.M. Byrne, M.A.J. Chaplain Math. Biosci. 1995 130 151

[4] H.M. Byrne, M.A.J. Chaplain Math. Comput. Modeling 1996 1 17

[5] X. Chen, S. Cui, A. Friedman Trans. Amer. Math. Soc. 2005 4771 4804

[6] X. Chen, A. Friedman SIAM J. Math. Anal. 2003 974 986

[7] S. Cui, A. Friedman Trans. Amer. Math. Soc. 2003 3537 3590

[8] S. Cui, A. Friedman. A hyperbolic free boundary problem modeling tumor growth. Interfaces Free Bound., 5 (2003) , 159–182.

[9] S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis J. Math. Biology 2003 424 452

[10] S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis Mathematical Medicine & Biology 2003 277 308

[11] S.J.H. Franks, H.M. Byrne, J.C.E. Underwood, C.E. Lewis J. Theoretical Biology 2005 523 543

[12] S.J.H. Franks, J.P. King Mathematical Medicine & Biology 2003 47 89

[13] A. Friedman. Cancer models and their mathematical analysis. In: Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, 1872, 223-246. Springer, Berlin, 2006.

[14] A. Friedman Interfaces and Free Boundaries 2006 247 261

[15] A. Friedman Math. Models & Methods in Applied Sciences 2007 1751 1772

[16] A. Friedman Interfaces and Free Boundaries 2008 245 262

[17] A. Friedman, B. Hu Math. Mod. Meth. Appl. Sci. 2008 1 33

[18] A. Friedman, B. Hu, C-Y. Kao. Cell cycle control at the first restriction point and its effect on tissue growth. Submitted for publication.

[19] A. Friedman, F. Reitich J. Diff. Eqs. 2002 509 557

[20] Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J.P. Freyer Biophysical Journal 2005 3884 3894

[21] N. Komaraova Bull. Math. Biology 2007 1647 1673

[22] H.A. Levine, S.L. Pamuk, B.D. Sleeman, M. Nilsen-Hamilton Bull. Math. Biology 2001 801 863

[23] G. Lolas. Mathematical modelling of proteolysis and cancer cell invasion of tissue. In: Tutorials in Mathematical Biosciences III, Lecture Notes in Mathematics, 1872, 77–130. Springer, Berlin, 2006.

[24] N. Mantzaris, S. Webb, H.G. Othmer J. Math. Biol. 2004 87 111

[25] M.A. Nowak, K. Sigmund Science 2004 793 799

[26] G.J. Pettet, C.P. Please, M.J. Tindall, D.L.S. Mcelwain Bull. Math. Biol. 2001 231 257

[27] R. Ribba, T. Colin, S. Schnell Theoretical Biology and Medical Modeling 2006 1 19

[28] V.A. Solonnikov. On quasistationary approximation in the problem of a capillary drop. In: J. Escher G. Simonett (Eds.), Progress in Nonlinear Differential Equations and Their Applications, 35, 643-671. Birkhäuser Verlag, Basel, 1999.

[29] M.M. Vainberg, V.A. Trenogin. Theory of branching solutions of non-linear equations. Nordhoff International Publishing, Leyden, 1974.

Cité par Sources :