Spatio-Temporal Modelling of the p53–mdm2 Oscillatory System
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 97-116.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we investigate the role of spatial effects in determining the dynamics of a subclass of signalling pathways characterised by their ability to demonstrate oscillatory behaviour. To this end, we formulate a simple spatial model of the p53 network that accounts for both a negative feedback and a transcriptional delay. We show that the formation of protein density patterns can depend on the shape of the cell, position of the nucleus, and the protein diffusion rates. The temporal changes in the total amounts of protein are also subject to spatial influences. The level of DNA damage required to induce sustained oscillations, for instance, depends on the morphology of the cell. The model also provides a new interpretation of experimentally observed undamped oscillations in p53 levels in single cells. Our simulations reveal that alternate sequences of high- and low-amplitude oscillations can occur. We propose that the digital pulses may correspond to snap-shots of our high-amplitude sequences. Shorter waiting-times between subsequent time-lapse fluorescence microscopy images in combination with lower detection thresholds may reveal the irregular high-frequency oscillations suggested by our spatial model.
DOI : 10.1051/mmnp/20094304

K. E. Gordon 1 ; I. M.M. van Leeuwen 1, 2 ; S. Laín 2 ; M. A.J. Chaplain 1

1 Department of Mathematics, University of Dundee, WTB/MSI-Complex, Old Hawkhill, DD1 5EH Dundee, Scotland, UK
2 epartment of Surgery and Oncology, University of Dundee, Ninewells Hospital, DD1 9SY Dundee, Scotland, UK
@article{MMNP_2009_4_3_a3,
     author = {K. E. Gordon and I. M.M. van Leeuwen and S. La{\'\i}n and M. A.J. Chaplain},
     title = {Spatio-Temporal {Modelling} of the p53{\textendash}mdm2 {Oscillatory} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {97--116},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2009},
     doi = {10.1051/mmnp/20094304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094304/}
}
TY  - JOUR
AU  - K. E. Gordon
AU  - I. M.M. van Leeuwen
AU  - S. Laín
AU  - M. A.J. Chaplain
TI  - Spatio-Temporal Modelling of the p53–mdm2 Oscillatory System
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 97
EP  - 116
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094304/
DO  - 10.1051/mmnp/20094304
LA  - en
ID  - MMNP_2009_4_3_a3
ER  - 
%0 Journal Article
%A K. E. Gordon
%A I. M.M. van Leeuwen
%A S. Laín
%A M. A.J. Chaplain
%T Spatio-Temporal Modelling of the p53–mdm2 Oscillatory System
%J Mathematical modelling of natural phenomena
%D 2009
%P 97-116
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094304/
%R 10.1051/mmnp/20094304
%G en
%F MMNP_2009_4_3_a3
K. E. Gordon; I. M.M. van Leeuwen; S. Laín; M. A.J. Chaplain. Spatio-Temporal Modelling of the p53–mdm2 Oscillatory System. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 97-116. doi : 10.1051/mmnp/20094304. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094304/

[1] B. Alberts, A. Johnson, J. Lewis, K. Roberts, P. Walter. Molecular Biology of the Cell, Fourth Edition. Garland Science, Taylor and Francis Group Ltd, Oxford, 2002.

[2] E. Appella, C.W. Anderson Eur. J. Biochem. 2001 2764 2772

[3] D. Bennett. Applications of Delay Differential Equations in Physiology and Epidemiology. PhD Thesis, University of Surrey, 2005.

[4] S. Bernard, B. Cajavec, L. Pujo-Menjouet, M.C. Mackey, H. Herzel Phil. Trans. R. Soc. A 2006 1155 1170

[5] A. Ciliberto, B. Novak, J.J. Tyson Cell Cycle 2005 488 493

[6] M.L. Dequeant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquie Science 2006 1595 1598

[7] B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia, 2002.

[8] C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson. Interdisciplinary Applied Mathematics, Mathematical Biology: Computational Cell Biology. Springer-Verlag, New York, 2002.

[9] R.S. Foo, Y.J. Nam, M.J. Ostreicher, M.D. Metzl, R.S. Whelan, C.F. Peng, A.W. Ashton, W. Fu, K. Mani, S.F. Chin, E. Provenzano, I. Ellis, N. Figg, S. Pinder, M.R. Bennett, C. Caldas, R.N. Kitsis Proc. Natl. Acad. Sci. USA 2007 20826 20831

[10] S.J. Gallagher, R.F. Kefford, H. Rizos Intl. J. Biochem. Cell Biol. 2006 1637 1641

[11] Y. Haupt, R. Maya, A. Kazaz, M. Oren Nature 1997 296 299

[12] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, R. Kageyama Science 2002 840 843

[13] T.R. Hupp, A. Sparks, D.P. Lane Cell 1995 237 245

[14] B.N. Kholodenko Nat. Rev. Mol. Cell Biol. 2006 165 176

[15] S. Krishna, M.H. Jensen, K. Sneppen Proc. Natl. Acad. Sci. USA 2006 10840 10845

[16] A. Kusumi, S. Yasushi, Y. Mutsuya Biophys. J. 1993 2021 2040

[17] G. Lahav, N. Rosenfield, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon Nat. Gen. 2004 147 150

[18] R. Lev Bar-Or, R. Maya, L.A. Segel, U. Alon, A.J. Levine, M. Oren Proc. Natl. Acad. Sci. USA 2000 11250 11255

[19] J. Lewis Curr. Biol. 2003 1398 1408

[20] H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell. Molecular Cell Biology. W.F. Freeman and Company, New York, 2003.

[21] J. Luo, M. Li, Y. Tang, M. Laszkowska, R.G. Roeder, W. Gu Proc. Natl. Acad. Sci. USA 2004 2259 2264

[22] L. Ma, J. Wagner, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky Proc. Natl. Acad. Sci. USA 2005 14266 14271

[23] S.M. Mendrysa, M.E. Perry Mol. Cell Biol. 2000 2023 2030

[24] J. Meyers, J. Craig, D.J. Odde Curr. Biol. 2006 1685 1693

[25] G.I. Mihalas, Z. Simon, G. Balea, E. Popa J. Biol. Syst. 2000 21 29

[26] N.A.M. Monk Curr. Biol. 2003 1409 1413

[27] C.W. Mullineaux, A. Nenniger, N. Ray, C. Robinson J. Bacteriol. 2006 3442 3448

[28] D.E. Nelson, A.E. Ihekwaba, M. Elliott, J.R. Johnson, C.A. Gibney, B.E. Foreman, G. Nelson, V. See, C.A. Horton, D.G. Spiler, S.W. Edwards, H.P. Mcdowell, J.F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D.B. Kell, M.R. White Science 2004 704 708

[29] S.R. Neves, P. Tsokas, A. Sarkar, E.A. Grace, P. Rangamani, S.M. Taubenfeld, C.M. Alberini, J.C. Schaff, R.D. Blitzer, I.I. Moraru, R. Iyengar Cell 2008 666 680

[30] L. Nie, M. Sasaki, C.G. Maki J. Biol. Chem. 2007 14616 14625

[31] B.A. Ogunnaike J. R. Soc. Interface 2006 175 184

[32] J. Owen Drug Discovery Today 2001 1081 1082

[33] I.G. Pearce, M.A.J. Chaplain, P.G. Schoeld, A.R.A. Anderson, S.F. Hubbard J. Theor. Biol. 2006 876 886

[34] S. Pigolotti, S. Krishna, M.H. Jensen Proc. Natl. Acad. Sci. USA 2007 6533 6537

[35] W. Schubert Cytometry 2006 209 211

[36] J.A. Sherratt, M.A. Lewis, A.C. Fowler Proc. Natl. Acad. Sci. USA 1995 2524 2528

[37] J.A. Sherratt, B.T. Eagen, M.A. Lewis Philos. Trans. R. Soc. London B 1997 79 92

[38] J.A. Sherratt Ecol. Lett. 2001 21 38

[39] S.Y. Shieh, M. Ikeda, Y. Taya, C. Prives Cell 1997 325 334

[40] J. Srividya, M.S. Gopinathan, S. Schnells Biophys. Chem. 2007 286 297

[41] Y. Tang, W. Zhao, Y. Chen, Y. Zhao, W. Gu Cell 2008 612 626

[42] G. Tiana, M.H. Jensen, K. Sneppen Eur. Phys. J. B 2002 135 140

[43] G. Tiana, S. Krishna, S. Pigolotti, M.H. Jensen, K. Sneppen Phys. Biol. 2007 R1 R17

[44] K.H. Vousden, D.P. Lane Nat. Mol. Cell Biol. 2007 275 283

[45] J. Wagner, L. Ma, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky I.E.E. Proc. Syst. Biol. 2005 109 118

[46] C. Wawra, M. Kuhl, H.A. Kestler FEBS Lett. 2007 4043 4048

[47] O. Wolkenhauer, M. Ullah, P. Wellstead, K.H. Cho FEBS Lett. 2005 1846 1853

[48] A. Zauberman, D. Flusberg, Y. Haupt, Y. Barak, M. Oren Nucleic Acids Res. 1995 2584 2592

[49] W.B.J. Zimmerman. Multiphysics Modeling With Finite Element Methods, Series on Stability, Vibration and Control of Systems, Series A - Vol.18. World Scientific Publishing Company, London, 2006.

Cité par Sources :