Mathematical Modelling of Tumour Dormancy
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 68-96.

Voir la notice de l'article provenant de la source EDP Sciences

Many tumours undergo periods in which they apparently do not grow but remain at a roughly constant size for extended periods. This is termed tumour dormancy. The mechanisms responsible for dormancy include failure to develop an internal blood supply, individual tumour cells exiting the cell cycle and a balance between the tumour and the immune response to it. Tumour dormancy is of considerable importance in the natural history of cancer. In many cancers, and in particular in breast cancer, recurrence can occur many years after surgery to remove the primary tumour, following a long period of occult disease. Mathematical modelling suggested that continuous growth of tumours was incompatible with data of the times of recurrence in breast cancer, suggesting that tumour dormancy was a common phenomenon. Modelling has also been applied to understanding the mechanisms responsible for dormancy, how they can be manipulated and the implications for cancer therapy. Here, the literature on mathematical modelling of tumour dormancy is reviewed. In conclusion, promising future directions for research are discussed.
DOI : 10.1051/mmnp/20094303

K. M. Page 1

1 Department of Mathematics, UCL, London WC1E 6BT, UK
@article{MMNP_2009_4_3_a2,
     author = {K. M. Page},
     title = {Mathematical {Modelling} of {Tumour} {Dormancy}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {68--96},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2009},
     doi = {10.1051/mmnp/20094303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/}
}
TY  - JOUR
AU  - K. M. Page
TI  - Mathematical Modelling of Tumour Dormancy
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 68
EP  - 96
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/
DO  - 10.1051/mmnp/20094303
LA  - en
ID  - MMNP_2009_4_3_a2
ER  - 
%0 Journal Article
%A K. M. Page
%T Mathematical Modelling of Tumour Dormancy
%J Mathematical modelling of natural phenomena
%D 2009
%P 68-96
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/
%R 10.1051/mmnp/20094303
%G en
%F MMNP_2009_4_3_a2
K. M. Page. Mathematical Modelling of Tumour Dormancy. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 68-96. doi : 10.1051/mmnp/20094303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/

[1] C.A. Klein, D. Hoelzel Cell Cycle 2006 1788 1798

[2] R.A. Willis. The Spread of Tumors in the Human Body. Butterworth and Co. Ltd., London, 1952.

[3] J.A. Aguirre-Ghiso Nature Rev. Cancer 2007 834 846

[4] T.G. Karrison, D.J. Ferguson, P. Meier J. Natl. Cancer Inst. 1999 80 85

[5] D. Weckermann, P. Mueller, F. Wawroschek, R. Harzmann, G. Riethmueller, G. Schlimok J. Urol. 2001 699 703

[6] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 365 (2005), No. 9472, 1687–1717.

[7] T. Saphner, D.C. Tormey, R. Gray J. Clin. Oncol. 1996 2738 2746

[8] L.E. Rutqvist, A. Wallgren, B. Nilsson Cancer 1984 1793 1800

[9] S. Meng, D. Tripathy, E.P. Frenkel, S. Shete, E.Z. Naftalis, J.F. Huth, P.D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T.P. Fleming, D. Herlyn, L.W.M.M. Terstappen, T. Fehm, T.F. Tucker, N. Lane, J. Wang, J.W. Uhr. Circulating tumour cells in patients with breast cancer dormancy. Clin. Cancer Res., 10, (2004), No. 24, 8152–8162.

[10] L. Norton, R. Simon, H.D. Brereton, A.E. Bogden Nature 1976 542 545

[11] M.W. Retsky, R. Demicheli, D.E. Swartzendruber, P.D. Bame, R.H. Wardwell, G. Bonadonna, J.F. Speer, P. Valagussa Breast Cancer Res. and Treat. 1997 193 202

[12] H.J.G. Bloom, W.W. Richardson, E.J. Harries Br. Med. J. 1962 213 221

[13] S.E. Clare, F. Nakhlis, J.C. Panetta Breast Cancer Res. 2000 430 435

[14] R. Demicheli, A. Abbatista, R. Micheli, P. Valagussa, G. Bonadonna. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res. Treat., 41 (1996), No. 2, 177–185.

[15] R. Demicheli, R. Micheli, P. Valagussa, G. Bonadonna J. Natl. Cancer Inst. 1999 347 348

[16] R. Demicheli Semin. Cancer Biol. 2001 297 305

[17] T.G. Karrison, D.J. Ferguson, P. Meier. RESPONSE: re: Dormancy of mammary carcinoma after mastectomy., J. Natl. Cancer Inst., 92 (1999), No. 4, 348.

[18] M. Brackstone, J.L. Townson, A.F. Chambers Breast Cancer Res. 2007 208

[19] R.P. Araujo, D.L.S. Mcelwain Bull. Math. Biol. 2004 1039 1091

[20] N. Bellomo, N.K. Li, P.K. Maini Math. Models Methods Appl. Sci. 2008 593 646

[21] J. Folkman N. Eng J. Med. 1971 1182 1186

[22] J. Folkman Nature Med. 1995 27 31

[23] L. Holmgren, M.S. O'Reilly, J. Folkman Nature Med. 1995 149 153

[24] M.S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W.S. Lane, Y. Cao, E.H. Sage, J. Folkman. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79 (1994), No. 2, 315–328.

[25] D. Hanahan, J. Folkman Cell 1996 353 364

[26] W. Risau, H. Sariola, H.-G. Zerwes, J. Sasse, P. Ekblom, R. Kemler, T. Doetschmann Development 1988 471 478

[27] W. Risau Nature 1997 671 674

[28] M.F. Bolontrade, R.R. Zhou, E.S. Kleinerman Clin. Cancer Res. 2002 3622 3627

[29] D. Ribatti, A. Vacca, F. Dammacco Eur. J. Cancer 2003 1835 1841

[30] N.V. Mantzaris, S. Webb, H.G. Othmer J. Math. Biol. 2004 111 187

[31] M.A.J. Chaplain, S.R. Mcdougall, A.R.A. Anderson Annu. Rev. Biomed. Eng. 2006 233 257

[32] M. Baum, M.A.J. Chaplain, A.R.A. Anderson, M. Douek, J.S. Vaidya. Does breast cancer exist in a state of chaos?, Europ. J. Cancer, 35 (1999), No. 6, 886–891.

[33] A.R.A Anderson, M.A.J. Chaplain Bull. Math. Biol. 1998 857 899

[34] V.R. Muthukkaruppan, L. Kubai, R. Auerbach J. Natl. Cancer Inst. 1982 699 705

[35] T. Alarcon, H.M. Byrne, P.K. Maini J. Theor. Biol. 2003 257 274

[36] M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58 (2009), No.s 4-5, 689–721.

[37] S.R. Mcdougall, A.R.A. Anderson, M.A.J. Chaplain, J.A. Sherratt Bull. Math. Biol. 2002 673 702

[38] M. Welter, K. Bartha, H. Rieger J. Theor. Biol. 2008 257 280

[39] A.R. Pries, T.W. Secomb, P. Gaehtgens Cardiovsacular Research 1996 654 667

[40] A.R. Pries, T.W. Secomb, P. Gaehtgens Am. J. Physiol. Heart Circ. Physiol. 1998 H349 H360

[41] A.R. Pries, B. Reglin, T.W. Secomb Am. J. Physiol. Heart Circ. Physiol. 2001 H1015 H1025

[42] H.V. Jain, J.E. Noer, T.L. Jackson. Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral angiogenesis. Bull. Math. Biol., 70 (2008), No. 1, 89–117.

[43] D. Wodarz, Y. Iwasa, N.L. Komarova J. Carcinogenesis 2004 13

[44] D. Wodarz, N.L. Komarova. Computational biology of cancer: lecture notes and mathematical modeling. World Scientific Publishing, Singapore, 2005.

[45] S. Ramanujan, G.C. Koenig, T.P. Padera, B.R. Stoll, R.K. Jain Cancer Research 2000 1442 1448

[46] D. Wodarz, D.C. Krakauer Oncology Reports 2001 1195 1201

[47] M.J. Plank, B.D. Sleeman, P.F. Jones J. Theor. Biol. 2004 435 454

[48] H.G. Othmer, A. Stevens SIAM J. Appl. Math. 1997 1044 1081

[49] G.N. Naumov, E. Bender, D. Zurakowski, S.-Y. Kand, D. Sampson, E. Flynn, R.S. Watnick, O. Straume, L.A. Akslen, J. Folkman, N. Almog J. Natl. Cancer Inst. 2006 316 325

[50] G. Bergers, L.E. Benjamin Nature Rev. Cancer 2002 401 410

[51] A. Abdollahi, C. Schwager, J. Kleeff, I. Esposito, S. Domhan, P. Peschke, K. Hauser, P. Hahnfelt, L. Hlatky, J. Debus, J.M. Peters, H. Friess, J. Folkman, P.E. Huber PNAS 2007 12890 12895

[52] P.T. Logan, B.F. Fernandes, S. Di Cesare, J.-C.A. Marshall, S.C. Maloney, M.N. Burnier Clin. Exp. Metastasis 2008 509 516

[53] J.L. Townson, A.F. Chambers Cell Cycle 2006 1744 1750

[54] G.N. Naumov, I.C. Macdonald, P.M. Weinmeister, N. Kerkvliet, K.V. Nadkarni, S.M. Wilson, V.L. Morris, A.C. Groom, A.F. Chambers Cancer Res. 2002 2162 2168

[55] J.A. Aguirre-Ghiso, D. Liu, A. Mignatti, K. Kovalski, L. Ossowaki Mol. Biol. Cell 2001 863 879

[56] C.M. Shachaf, A.M. Kopelman, C. Arvanitis, Å. Karlsson, S. Beer, S. Mandl, M.H. Bachmann, A.D. Borowsky, B. Ruebner, R.D. Cardiff, Q. Yang, J.M. Bishop, C.H. Contag, D.W. Felsher Nature 2004 1112 1117

[57] M. Guba, G. Cernaianu, G. Koehl, E.K. Geissler, K.-W. Jauch, M. Anthuber, W. Falk, M. Steinbauer Cancer Res. 2001 5575 5579

[58] A.L. Allan, S.A. Vantyghem, A.B. Tuck, A.F. Chambers. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Disease, 26 (2006, 2007), No. 1, 87–98.

[59] M. Balic, H. Lin, L. Young, D. Hawes, A. Giuliano, G. Mcnamara, R.H. Datar, R.J. Cote Clin. Cancer Res. 2006 5615 5621

[60] T. Alarcon, R. Marches, K.M. Page J. Theor. Biol. 2006 54 71

[61] T. Alarcon, H.M. Byrne, P.K. Maini. Towards whole organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85 (2004), No.s 2–3, 451–472.

[62] T. Alarcon, H.M. Byrne, P.K. Maini Multiscale Model. Simul. 2005 440 475

[63] H.M. Byrne, M.R. Owen, T. Alarcon, J. Murphy, P.K. Maini Math. Mod. Meth. Appl. Sci. 2006 1219 1241

[64] B. Ribba, T. Colin, S. Schnell Theor. Biol. Med. Model. 2006 7

[65] V. Hatzimanikatis, K.H. Lee, J.E. Bailey Biotechnol. bioeng. 1999 631 637

[66] M. Gyllenberg. G.F. Webb. Quiescence as an explanation of Gompertzian tumor growth. Growth, dev. aging, 86 (1987), No.s 1-2, 67–95.

[67] N.L. Komarova, D. Wodarz. Effect of cellular quiescence on the success of targeted CML therapy. PLoS ONE, 2 (2007), No. 10, e990.

[68] J.W. Uhr, R.H. Scheuermann, N.E. Street, E.S. Vitetta Nature Med. 1997 505 509

[69] B. Quesnel. Dormant tumor cells as a therapeutic target? Cancer Lett., 267 (2008), No. 1, 10–17.

[70] G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber Nature Immunology 2002 991 999

[71] K.J. Weinhold, L.T. Goldstein, E.F. Wheelock Nature 1977 59 61

[72] H. Siu, E.S. Vitetta, R.D. May, J.W. Uhr J. Immunol. 1986 1376 1382

[73] C.G. Clemente, M.C. Mihm Jr Cancer 1996 1303 1310

[74] J. Galon, A. Costes, F. Sanchez-Cabo, A. Kirilovsky, B. Mlecnik, C. Lagorce-Pagès, M. Tosolini, M. Camus, A. Berger, P. Wind, F. Zinzindohoué, P. Bruneval, P.-H. Cugnenc, Z. Trajanoski, W.-H. Fridman, F. Pagès Science 2006 1960 1964

[75] E. Sato, S. H. Olson, J. Ahn, B. Bundy, H. Nishikawa, F. Qian, A.A. Jungbluth, D. Frosina, S. Gnjatic, C. Ambrosone, J. Kepner, T. Odunsi, G. Ritter, S. Lele, Y.-T. Chen, H. Ohtani, L.J. Old, K. Odunsi Proc. Natl. Acad. Sci. 2005 18538 18543

[76] C.M. Koebel, W. Vermi, J.B. Swann, N. Zerafa, S.J. Rodig, L.J. Old, M.J. Smyth, R.D. Schreiber Nature 2007 903 907

[77] K.M. Page, J.W. Uhr Leukemia and Lymphoma 2005 313 327

[78] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, S. Perelson Bull. Math. Biol. 1994 295 321

[79] V.A. Kuznetsov, G.D. Knott. Modeling tumor regrowth and immunotherapy. Math. Comp. Modelling, 33 (2001), No.s 12–13, 1275–1287.

[80] J.A. Adam, N. Bellomo. A survey of tumor-immune system dynamics (modeling and simulation in science, engineering and technology). Birkhaeuser, Boston, 1996.

[81] N. Bellomo, L. Preziosi. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comp. Model., 32 (2000), No.s 3–4, 413–452.

[82] D. Kirschner, J.C. Panetta J. Math. Biol. 1998 235 252

[83] L.G. De Pillis, W. Gu, A.E. Radunskaya J. Theor. Biol. 2006 841 862

[84] A. Diefenbach, E.R. Jensen, A.M. Jamison, D. Raulet Nature 2001 165 171

[85] D. Wodarz J. R. Soc. Interface 2009 179 186

[86] D. Wodarz, N. Komarova. Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS One, 4 (2009) , No. 1, e4271.

[87] A. Matzavinos, M.A.J. Chaplain, V.A. Kuznetsov Math. Medicine and Biology: A Journal of the IMA 2004 1 34

[88] A. Matzavinos. Dynamic irregular patterns and invasive wavefronts: the control of tumour growth by cytotoxic T-lymphcytes. In: Selected topics in cancer modeling (modeling and simulation in science engineering and technology), Birkhauser, Boston, 2008.

[89] A.W. Le Serve, K. Hellman Br. Med. J. 1972 597 601

Cité par Sources :