Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2009_4_3_a2, author = {K. M. Page}, title = {Mathematical {Modelling} of {Tumour} {Dormancy}}, journal = {Mathematical modelling of natural phenomena}, pages = {68--96}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2009}, doi = {10.1051/mmnp/20094303}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/} }
TY - JOUR AU - K. M. Page TI - Mathematical Modelling of Tumour Dormancy JO - Mathematical modelling of natural phenomena PY - 2009 SP - 68 EP - 96 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/ DO - 10.1051/mmnp/20094303 LA - en ID - MMNP_2009_4_3_a2 ER -
K. M. Page. Mathematical Modelling of Tumour Dormancy. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 68-96. doi : 10.1051/mmnp/20094303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094303/
[1] Cell Cycle 2006 1788 1798
,[2] R.A. Willis. The Spread of Tumors in the Human Body. Butterworth and Co. Ltd., London, 1952.
[3] Nature Rev. Cancer 2007 834 846
[4] J. Natl. Cancer Inst. 1999 80 85
, ,[5] J. Urol. 2001 699 703
, , , , ,[6] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 365 (2005), No. 9472, 1687–1717.
[7] J. Clin. Oncol. 1996 2738 2746
, ,[8] Cancer 1984 1793 1800
, ,[9] S. Meng, D. Tripathy, E.P. Frenkel, S. Shete, E.Z. Naftalis, J.F. Huth, P.D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T.P. Fleming, D. Herlyn, L.W.M.M. Terstappen, T. Fehm, T.F. Tucker, N. Lane, J. Wang, J.W. Uhr. Circulating tumour cells in patients with breast cancer dormancy. Clin. Cancer Res., 10, (2004), No. 24, 8152–8162.
[10] Nature 1976 542 545
, , ,[11] Breast Cancer Res. and Treat. 1997 193 202
, , , , , , ,[12] Br. Med. J. 1962 213 221
, ,[13] Breast Cancer Res. 2000 430 435
, ,[14] R. Demicheli, A. Abbatista, R. Micheli, P. Valagussa, G. Bonadonna. Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res. Treat., 41 (1996), No. 2, 177–185.
[15] J. Natl. Cancer Inst. 1999 347 348
, , ,[16] Semin. Cancer Biol. 2001 297 305
[17] T.G. Karrison, D.J. Ferguson, P. Meier. RESPONSE: re: Dormancy of mammary carcinoma after mastectomy., J. Natl. Cancer Inst., 92 (1999), No. 4, 348.
[18] Breast Cancer Res. 2007 208
, ,[19] Bull. Math. Biol. 2004 1039 1091
,[20] Math. Models Methods Appl. Sci. 2008 593 646
, ,[21] N. Eng J. Med. 1971 1182 1186
[22] Nature Med. 1995 27 31
[23] Nature Med. 1995 149 153
, ,[24] M.S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R.A. Rosenthal, M. Moses, W.S. Lane, Y. Cao, E.H. Sage, J. Folkman. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79 (1994), No. 2, 315–328.
[25] Cell 1996 353 364
,[26] Development 1988 471 478
, , , , , ,[27] Nature 1997 671 674
[28] Clin. Cancer Res. 2002 3622 3627
, ,[29] Eur. J. Cancer 2003 1835 1841
, ,[30] J. Math. Biol. 2004 111 187
, ,[31] Annu. Rev. Biomed. Eng. 2006 233 257
, ,[32] M. Baum, M.A.J. Chaplain, A.R.A. Anderson, M. Douek, J.S. Vaidya. Does breast cancer exist in a state of chaos?, Europ. J. Cancer, 35 (1999), No. 6, 886–891.
[33] Bull. Math. Biol. 1998 857 899
,[34] J. Natl. Cancer Inst. 1982 699 705
, ,[35] J. Theor. Biol. 2003 257 274
, ,[36] M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58 (2009), No.s 4-5, 689–721.
[37] Bull. Math. Biol. 2002 673 702
, , ,[38] J. Theor. Biol. 2008 257 280
, ,[39] Cardiovsacular Research 1996 654 667
, ,[40] Am. J. Physiol. Heart Circ. Physiol. 1998 H349 H360
, ,[41] Am. J. Physiol. Heart Circ. Physiol. 2001 H1015 H1025
, ,[42] H.V. Jain, J.E. Noer, T.L. Jackson. Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral angiogenesis. Bull. Math. Biol., 70 (2008), No. 1, 89–117.
[43] J. Carcinogenesis 2004 13
, ,[44] D. Wodarz, N.L. Komarova. Computational biology of cancer: lecture notes and mathematical modeling. World Scientific Publishing, Singapore, 2005.
[45] Cancer Research 2000 1442 1448
, , , ,[46] Oncology Reports 2001 1195 1201
,[47] J. Theor. Biol. 2004 435 454
, ,[48] SIAM J. Appl. Math. 1997 1044 1081
,[49] J. Natl. Cancer Inst. 2006 316 325
, , , , , , , , , ,[50] Nature Rev. Cancer 2002 401 410
,[51] PNAS 2007 12890 12895
, , , , , , , , , , , , ,[52] Clin. Exp. Metastasis 2008 509 516
, , , , ,[53] Cell Cycle 2006 1744 1750
,[54] Cancer Res. 2002 2162 2168
, , , , , , , ,[55] Mol. Biol. Cell 2001 863 879
, , , ,[56] Nature 2004 1112 1117
, , , , , , , , , , , , ,[57] Cancer Res. 2001 5575 5579
, , , , , , ,[58] A.L. Allan, S.A. Vantyghem, A.B. Tuck, A.F. Chambers. Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Disease, 26 (2006, 2007), No. 1, 87–98.
[59] Clin. Cancer Res. 2006 5615 5621
, , , , , , ,[60] J. Theor. Biol. 2006 54 71
, ,[61] T. Alarcon, H.M. Byrne, P.K. Maini. Towards whole organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85 (2004), No.s 2–3, 451–472.
[62] Multiscale Model. Simul. 2005 440 475
, ,[63] Math. Mod. Meth. Appl. Sci. 2006 1219 1241
, , , ,[64] Theor. Biol. Med. Model. 2006 7
, ,[65] Biotechnol. bioeng. 1999 631 637
, ,[66] M. Gyllenberg. G.F. Webb. Quiescence as an explanation of Gompertzian tumor growth. Growth, dev. aging, 86 (1987), No.s 1-2, 67–95.
[67] N.L. Komarova, D. Wodarz. Effect of cellular quiescence on the success of targeted CML therapy. PLoS ONE, 2 (2007), No. 10, e990.
[68] Nature Med. 1997 505 509
, , ,[69] B. Quesnel. Dormant tumor cells as a therapeutic target? Cancer Lett., 267 (2008), No. 1, 10–17.
[70] Nature Immunology 2002 991 999
, , , ,[71] Nature 1977 59 61
, ,[72] J. Immunol. 1986 1376 1382
, , ,[73] Cancer 1996 1303 1310
,[74] Science 2006 1960 1964
, , , , , , , , , , , , , , ,[75] Proc. Natl. Acad. Sci. 2005 18538 18543
, , , , , , , , , , , , , , , , ,[76] Nature 2007 903 907
, , , , , , ,[77] Leukemia and Lymphoma 2005 313 327
,[78] Bull. Math. Biol. 1994 295 321
, , ,[79] V.A. Kuznetsov, G.D. Knott. Modeling tumor regrowth and immunotherapy. Math. Comp. Modelling, 33 (2001), No.s 12–13, 1275–1287.
[80] J.A. Adam, N. Bellomo. A survey of tumor-immune system dynamics (modeling and simulation in science, engineering and technology). Birkhaeuser, Boston, 1996.
[81] N. Bellomo, L. Preziosi. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comp. Model., 32 (2000), No.s 3–4, 413–452.
[82] J. Math. Biol. 1998 235 252
,[83] J. Theor. Biol. 2006 841 862
, ,[84] Nature 2001 165 171
, , ,[85] J. R. Soc. Interface 2009 179 186
[86] D. Wodarz, N. Komarova. Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS One, 4 (2009) , No. 1, e4271.
[87] Math. Medicine and Biology: A Journal of the IMA 2004 1 34
, ,[88] A. Matzavinos. Dynamic irregular patterns and invasive wavefronts: the control of tumour growth by cytotoxic T-lymphcytes. In: Selected topics in cancer modeling (modeling and simulation in science engineering and technology), Birkhauser, Boston, 2008.
[89] Br. Med. J. 1972 597 601
,Cité par Sources :