Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 12-67.

Voir la notice de l'article provenant de la source EDP Sciences

This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the focus will be set here. To this purpose, mathematical modelling should represent proliferating cell population dynamics with natural built-in control targets (which implies modelling the cell division cycle), together with the distribution of drugs in the organism and their molecular actions on different targets at the cell level on proliferation, i.e., molecular pharmacokinetics-pharmacodynamics of antiproliferative drugs. This should make possible optimal control of drug delivery with constraints to be determined according to the main pharmacological issues encountered in the clinic: unwanted toxic side-effects, occurrence of drug resistance. Mathematical modelling should also take into account physiological determinants of cell and tissue proliferation, such as intervention of the immune system, circadian control on cell cycle checkpoint proteins, and activity of intracellular drug processing enzymes together with individual variations in the activities of these proteins (genetic polymorphism). Taking these points into account will add to the rich scenery of normal or disrupted cell and tissue regulations, and their corrections by drugs, a natural environmental, whole body physiological, frame. It is necessary indeed to consider such a framework if one wants to eventually be actually helpful to clinicians who routinely treat by combinations of drugs living Humans with their complex whole body regulations, often dependent on genotypic variations, and not isolated cells or tissues.
DOI : 10.1051/mmnp/20094302

J. Clairambault 1

1 INRIA Paris-Rocquencourt, BANG project-team, BP 105, F78153 Le Chesnay Cedex
@article{MMNP_2009_4_3_a1,
     author = {J. Clairambault},
     title = {Modelling {Physiological} and {Pharmacological} {Control} on {Cell} {Proliferation} to {Optimise} {Cancer} {Treatments}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {12--67},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2009},
     doi = {10.1051/mmnp/20094302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094302/}
}
TY  - JOUR
AU  - J. Clairambault
TI  - Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 12
EP  - 67
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094302/
DO  - 10.1051/mmnp/20094302
LA  - en
ID  - MMNP_2009_4_3_a1
ER  - 
%0 Journal Article
%A J. Clairambault
%T Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments
%J Mathematical modelling of natural phenomena
%D 2009
%P 12-67
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094302/
%R 10.1051/mmnp/20094302
%G en
%F MMNP_2009_4_3_a1
J. Clairambault. Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 3, pp. 12-67. doi : 10.1051/mmnp/20094302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094302/

[1] M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Analysis, 54 (2003), No. 8,1469–1491.

[2] M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4,1328–1352.

[3] M. Adimy, F. Crauste, A. El Abdllaoui J. Biological Systems 2008 395 424

[4] B.D. Aguda. Modeling the cell division cycle. In A. Friedman (Ed.) Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer, pp. 1–22. Springer, New York, 2005.

[5] Z. Agur. Mathematical modelling of cancer chemotherapy: Investigation of the resonance phenomenon. In: O. Arino et al. (Ed.). Advances in mathematical population dynamics -molecules, cells and man. Papers from the 4th international conference, Rice Univ., Houston, TX, USA, May 23–27, 1995, Ser. Math. Biol. Med. 6 (1997), pp. 571–578, World Scientific, Singapore.

[6] T. Alarcón, H.M. Byrne, P.K. Maini Prog. Biophys. Mol. Biol. 2004 451 72

[7] L. Alberghina, H.W. Westerhoff (Eds.). Systems Biology. Definitions and Perspectives. Springer, Berlin, 2005.

[8] B.B. Aldridge, J.M. Burke, D.A. Lauffenburger, P.K. Sorger Nature Rev. Mol. Cell Biol. 2006 1195 1203

[9] A. Altinok, F. Lévi, A. Goldbeter Eur. J. Pharm. Sci. 2009 20 38

[10] J.C. Ameisen. La sculpture du vivant. Stock, Paris, 1999.

[11] A.R.A. Anderson, M.A. Chaplain. Chap 10 in L. Preziosi (Ed.). Cancer modelling and simulation, Chapman and Hall, London, 2003.

[12] A.R.A. Anderson, A.M. Weaver, P.T. Cummings, V. Quaranta. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127 (2006), No. 5, 905–915.

[13] A. Aouba, F. Péquignot, A. Le Toullec, E. Jougla. Les causes médicales de décès en France en 2004 et leur évolution / Medical causes of death in France in 2004 and trends 1980-2004 (English abstract). Bulletin épidémiologique hebdomadaire de l'INVS,18 septembre 2007, 35–36. Available on line from http://www.invs.sante.fr/beh/2007/35_36/

[14] O. Arino Acta Biotheor. 1995 3 25

[15] O. Arino, M. Kimmel SIAM J. Appl. Math. 1993 1480 1504

[16] O. Arino, E. Sanchez J. Theor. Med. 1997 35 51

[17] H. Barbason, B. Bouzahzah, C. Herens, J. Marchandise, J. Sulon, J. Van Cantfort Cell Prolif. 1989 451 460

[18] J. Barnes. The Presocratic philosophers. Paperback edition,1 vol., Routledge, London, 1982.

[19] M.-A. Barrat-Petit, C. Naulin-Ifi, P. Mahler, G. Milano Pathol.-Biol. 2005 261 264

[20] C. Basdevant, J. Clairambault, F. Lévi Mathematical Modelling and Numerical Analysis 2006 1069 1086

[21] B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B. Van Brunt, G. Wake, D.J.N. Wall J. Math. Biol. 2003 295 312

[22] F. Bekkal Brikci, J. Clairambault, B. Perthame Mathematical and Computer Modelling 2008 699 713

[23] F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol., 57(2008), No. 1, 91–110.

[24] N. Bellomo (Ed.). Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy. Birkhäuser, Boston, 2008.

[25] N. Bellomo, M. Delitala Physics of Life Reviews 2008 183 206

[26] Y. Ben-Neriah, G.Q. Daley, A.M. Mes-Masso, O.N. Witte, D. Baltimore. The chronic myelogenous leukemia-specific p210 protein is the product of the BCR/ABL hybrid gene. Science, 233 (1986), No. 4760 , 212–214.

[27] S. Bernard, HP. Herzel. Why do cells cycle with a 24 h period? Genome Informatics, 17 (2006), No. 1, 72–79.

[28] S. Bernard, J. Bélair, M.C. Mackey J. Theor. Biol. 2003 283 298

[29] N. Bessonov, A. Ducrot, V. Volpert. Modeling of leukemia development in the bone marrow. Proc. of the annual Symposium on Mathematics applied in Biology and Biophysics, Tome XLVIII (2005), vol. 2, 79–88.

[30] N. Bessonov, I. Demin, L. Pujo-Menjouet, V. Volpert Mathematical and computer modelling 2009 2116 2127

[31] M. Bizzarri, A. Cucina, F. Conti, F. D'Anselmi Acta Biotheor. 2008 173 196

[32] G.A. Bjarnason, R.C.K. Jordan Am. J. Pathol. 1999 613 622

[33] M.V. Blagosklonny, A. Pardee Cell Cycle 1974 103 110

[34] J.L. Boldrini, M.I.S. Costa IMA J. Math. Appl. Med. Biology 2000 33 51

[35] N.A. Boughattas, F. Lévi Cancer Research 1989 3362 3368

[36] K. Boushaba, H.A. Levine, M. Nilsen-Hamilton Bull. Math. Biol. 2006 1495 1526

[37] L. Bourgey. Observation et expérience chez Aristote. Vrin, coll. Bibliothèque d'Histoire de la Philosophie, Paris, 1955.

[38] M. Breccia, G. Alimena Cardiovasc. Hematol. Disord. Drug Targets 2009 21 28

[39] N.F. Britton. Reaction-diffusion equations and their applications to biology. Academic Press, London, 1986

[40] M.P. Brynildsen, J.J. Collins Mol. Cell 2009 137 138

[41] F.J. Burns, I.F. Tannock Cell Tissue Kinet. 1970 321 334

[42] H.M. Byrne, D. Drasdo J. Math. Biol. 2009 657 87

[43] L. Calzone, S. Soliman. Coupling the cell cycle and the circadian cycle. INRIA internal research report #5835 (2006). Available online from http://hal.inria.fr/INRIA-RRRT.

[44] A. Cappuccio, M.A. Herrero, L. Nunez Med Phys. 2009 98 104

[45] N. Champagnat, R. Ferrière, S. Méléard Theoretical Population Biology 2006 297 321

[46] S.G. Chaney, S.L. Campbell, E. Bassett, Y.B. Wu Clin. Rev. Oncol. Hematol. 2003 3 11

[47] J.T. Chang, C. Carvalho, S. Mori Mol. Cell 2009 104 14

[48] G. Chiorino, J.A.J. Metz, D. Tomasoni, P. Ubezio J. Theor. Biol. 2001 185 199

[49] A. Ciliberto, M.J. Petrus, J.J. Tyson, J.C. Sible Biophys. Chem. 2003 573 89

[50] A. Ciliberto, B. Novak, J.J. Tyson Cell Cycle 2005 488 493

[51] J. Clairambault IEEE-EMB Magazine 2008 20 24

[52] J. Clairambault, S. Gaubert, B. Perthame C. R. Acad. Sci. (Paris) Ser. I Mathématique 2007 549 554

[53] J. Clairambault Advanced Drug Delivery Reviews (ADDR) 2007 1054 1068

[54] J. Clairambault, P. Michel, B. Perthame. A model of the cell cycle and its circadian control. In: Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis, Deutsch, A., Brusch, L., Byrne, H., de Vries, G., Herzel, H. (Eds.), Birkhäuser, Boston, pp. 239-251, 2007.

[55] J. Clairambault, P. Michel, B. Perthame C. R. Acad. Sci. (Paris) Mathématique (Équations aux dérivées partielles) 2006 17 22

[56] L. Cojocaru, Z. Agur. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. BioSci., 109 (1992), No 1, 85–97.

[57] C. Colijn, M.C. Mackey J. Theor. Biol. 2005 117 132

[58] M.I.S Costa, J.L. Boldrini Bull. Math. Biol. 1997 205 232

[59] M.I.S. Costa, J.L. Boldrini Bull. Math. Biol. 1997 707 724

[60] C. Csajka, D. Verotta J. Pharmacokinet. Pharmacodyn. 2006 227 79

[61] A. Csikasz Nagy, D. Battogtokh, K.C. Chen, B. Novak, J.J. Tyson Biophys J. 2006 4361 79

[62] R. Dautray, J.-L. Lions. Mathematical analysis and numerical methods for sciences and technology. Ch. VIII, 187–199, Springer, Berlin,1990.

[63] T. David-Pfeuty Biochim Biophys Acta. 2006 38 66

[64] B.F. Dibrov, A.M. Zhabotinsky, Yu.A. Neyfakh, M.P. Orlova, L.I. Churikova Math. BioSci. 1983 167 185

[65] B.F. Dibrov, A.M. Zhabotinsky, Yu.A. Neyfakh, M.P. Orlova, L.I. Churikova Math. BioSci. 1985 1 31

[66] O. Diekmann, P.E. Jabin, S. Mischler, B. Perthame Theoretical Population Biology 2005 257 271

[67] L. Dimitrio. Irinotecan: Modelling intracellular pharmacokinetics and pharmacodynamics, M2 master thesis (in French, English summary). University Pierre-et-Marie-Curie and INRIA internal report, June 2007.

[68] D. Dingli, A. Traulsen, J.M. Pacheco Cell Cycle 2007 461 466

[69]

[70] D. Dingli, A. Traulsen, J.M. Pacheco. Compartmental architecture and dynamics of hematopoiesis. PLoS One, 2007, Apr. 4, 2(4): e345. [doi:10.1371/journal.pone.0000345].

[71] D. Dingli, J.M. Pacheco Stem Cell Rev. 2008 57 64

[72] D. Dingli, T. Antal, A. Traulsen, J.M. Pacheco Cell Prolif. 2009 330 338

[73] M. Doumic-Jauffret Mathematical Modelling of Natural Phenomena 2007 121 15

[74] D. Drasdo, S. Höhme, M. Block. On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models? J. Stat. Phys.,128 (2007), No. 1-2, 287–345.

[75] B.J. Druker Nature Med. 1996 561 566

[76] B.J. Druker N. Engl. J. Med. 2001 1031 1037

[77] A. Ducrot, V. Volpert Mathematical Modelling of Natural Phenomena 2007 101 120

[78] M. Eisen. Mathematical models in cell biology and cancer chemotherapy. Lectures Notes in Biomathematics 30, Springer, Berlin, 1979.

[79] M. Elshaikh, M. Ljungman, R. Ten Haken, A.S. Lichter. Advances in Radiation Oncology. Annu. Rev. Med., 57 (2006),19–31.

[80] S. Faivre, D. Chan, R. Salinas, B. Woynarowska, J.M. Woynarowski Biochemical pharmacology 2003 225 237

[81] E. Fearon, B. Vogelstein Cell 1990 759 67

[82] J.E. Ferrell Jr Trends Biochem. Sci. 1996 460 466

[83] J.E. Ferrell Jr Trends Biochem. Sci. 1997 288 289

[84] E. Filipski, V.M. King, X.M. Li, T.G. Granda, F. Lévi J. Natl. Cancer Inst. 2002 690 697

[85] E. Filipski, P.F. Innominato, M.W. Wu, X.M. Li, S. Iacobelli, L.J. Xian, F. Lévi J. Natl. Cancer Inst. 2005 507 517

[86] G. Finak, N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova, H. Zhao, H. Chen, G. Omeroglu, S. Meterissian, A. Omeroglu, M. Hallett, M. Park Nature Med. 2008 518 527

[87] B. Finkenstädt, E.A. Heron, M. Komorowski, K. Edwards, S. Tang, C.V. Harper Cv, J.R. Davis, M.R. White, A.J. Millar, D.A. Rand Bioinformatics 2008 2901 2907

[88] K.R. Fister, J.C. Panetta. Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math., 60 (2000), No. 3, 1059–1072.

[89] C. Foley, S. Bernard, M.C. Mackey J. Theor. Biol. 2006 754 763

[90] C. Foley, M.C. Mackey J. Math. Biol. 2009 285 322

[91] C. Foley, M.C. Mackey J. Theor. Biol. 2009 27 44

[92] D.B. Forger, M.E. Jewett, R.E. Kronauer J. Biol .Rhythms 1999 532 7

[93] D.B. Forger, R.E. Kronauer SIAM J. Appl. Math. 2002 1281 1296

[94] D.B. Forger, C.S. Peskin Proc. Natl. Acad. Sci. USA 2003 14806 14811

[95] D.B. Forger, D.A. Dean OMICS 2003 387 400

[96] S. A. Frank. Dynamics of Cancer. Incidence, Inheritance and evolution. Princeton university Press, Princeton, 2007.

[97] A. Friedman (Ed.). Cell Cycle, Proliferation, and Cancer. Tutorials in Mathematical Biosciences III, Lecture Notes in Mathematics 1872 / Mathematical Biosciences Subseries, Springer, New York, 2006.

[98] L. Fu, H. Pelicano, J. Liu, P. Huang, C.C. Lee Cell 2002 41 50

[99] L. Fu Nature Rev. Cancer 2003 350 361

[100] J. Galle, G. Aust, G. Schaller, T. Beyer, D. Drasdo Cytometry A 2006 704 710

[101] R.A. Gatenby, E.T. Gawlinski Cancer Res. 1996 745 53

[102] R.A. Gatenby, E.T. Gawlinski Cancer Res. 2003 3847 54

[103] R.A. Gatenby, R.J. Gillies Nature Rev. Cancer 2008 56 61

[104] S. Génieys, V. Volpert, P. Auger C. R. Acad. Sci. Paris Biologie 2006 876 879

[105] S. Génieys, N. Bessonov, V. Volpert Mathematical and Computer Modelling 2009 2109 2115

[106] A. Gerisch, M.A. Chaplain J. Theor. Biol. 2008 684 704

[107] N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. Liron, P. Polak, G. Lahav, U. Alon. Oscillations and variability in the p53 system. Mol. Syst. Biol., 2 (2006), 2:2006.0033. Epub 2006 Jun 13. [doi:10.1038/msb4100068].

[108] D. Gholam, S. Giacchetti, C. Brézault-Bonnet, M. Bouchahda, D. Hauteville, R. Adam, B. Ducot, O. Ghémard, F. Kustlinger, C. Jasmin, F. Lévi Oncologist 2006 1072 80

[109] A. Goldbeter, D.E. Koshland Jr Proc. Natl. Acad. Sci. USA 1981 6840 4

[110] A. Goldbeter Proc. Natl. Acad. Sci. USA 1991 9107 11

[111] A. Goldbeter. A model for circadian oscillations in the Drosophila period protein (PER). Proc Roy. Soc. B (Biol. Sci.) 261 (1995), No. 1362, 319–324.

[112] A. Goldbeter. Biochemical oscillations and cellular rhythms. Cambridge University Press, 1996.

[113] J.H. Goldie, A.J. Coldman Canc. Treat. Rep. 1979 1727 1733

[114] J.H. Goldie, A.J. Coldman. Drug Resistance in Cancer: Mechanisms and Models. Cambridge University Press,1998.

[115] B.C. Goodwin. Temporal organization in cells: a dynamic theory of cellular control processes. Academic Press, New York, 1963.

[116] B.C. Goodwin. Oscillatory behavior in enzymatic control processes. In: Advances in enzyme regulation, vol. 3 (G. Weber, Ed.), pp. 425–438, Pergamon Press, Oxford, 1965.

[117] M.M. Gottesmann, T. Fojo, S.E. Bates Nature Rev. Cancer 2002 48 58

[118] T. Granda, X.H. Liu, R. Smaaland, N. Cermakian, E. Filipski, P. Sassone-Corsi, F. Lévi FASEB J. 2005 304 306

[119] M. Gyllenberg, G. Webb Growth Dev. Aging 1989 25 33

[120] M. Gyllenberg, G. Webb J. Math. Biol. 1990 671 94

[121] T. Haferlach. Molecular genetic pathways as therapeutic targets in AML. In: Educational book, ASH 2008 meeting, pp. 400–411, 2008.

[122] D. Hanahan, R.A. Weinberg Cell 2000 57 70

[123]

[124] C. Haurie, D.C. Dale, M.C. Mackey Blood 1998 2629 2640

[125] R. Heinrich, S. Schuster. The regulation of cellular systems. Chapman and Hall, New York, 1996.

[126]

[127] P. Hinow, S.E. Wang, C.L. Arteaga, G.F. Webb. A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor. Theor. Biol. Med. Modelling, (2007). [doi:10.1186/1742-4682-4-14.]

[128] M. Hollstein, D. Sidransky, B. Vogelstein, C.C. Harris Science 1991 49 53

[129] P.J. Houghton, G.S. Germain, F.C. Harwood, J.D. Schuetz, C.F. Stewart, E. Buchdunger, P. Traxler Canc. Res. 2004 2333 2337

[130] A. Iliadis, D. Barbolosi Computers Biomed. Res. 2000 211 226

[131] A. Iliadis, D. Barbolosi Computers Biol. Med. 2001 157 172

[132] F. Innocenti, D.L. Kroetz, E. Schuetz, M.E. Dolan, J. Ramirez, M. Relling, P.X. Chen, S. Das, G.L. Rosner, M.J. Ratain. Comprehensive pharmacogenetic analysis of Irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol., (2009), Apr. 6 [Epub ahead of print]. [doi: 10.1200/JCO.2008.20.6300].

[133] T.L. Jackson, H.M. Byrne Math. Biosci. 2000 17 38

[134] A. Jemal, R. Siegel, E. Ward, T. Murray, J.Q. Xu, M.J. Thun CA Cancer J. Clin. 2007 43 66

[135] B. Kang, Y.Y. Li, X. Chang, L. Liu, Y.X. Li. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation. PLoS Comput. Biol., (2008). [doi: 10.1371/journal.pcbi.1000019].

[136] M.B. Kastan, J. Bartek Nature 2004 316 323

[137] J.P. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998.

[138] Yu. Kheifetz, Z. Kogan Math. Models Meth. Appl. Sci. 2006 1 18

[139] P.S. Kim, P.P. Lee, D. Levy. Modeling Imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70 (2008), No. 3, 728–744.

[140] P.S. Kim, P.P. Lee, D. Levy. A PDE model for Imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. 70 (2008), No. 7, 1994–2016.

[141] M. Kimmel, A. Swierniak. Control theory approach to cancer chemotherapy: Benefiting from phase dependence and overcoming drug resistance. In: Cell cycle, proliferation, and cancer (A. Friedman, Ed.), Springer LN 1872, pp. 185–216, Springer, New York, 2006.

[142] H. Kitano (Ed.). Foundations of Systems Biology. MIT Press, Cambridge (MA), 2001.

[143] H. Kitano Nature 2002 206 210

[144] H. Kitano. Cancer as a robust system: Implications for anticancer therapy. Nature Rev. Cancer, 4 ( 2004), No. 3, 227–235.

[145] H. Kitano Nature Rev. Drug Discovery 2007 202 210

[146] M. Kivisaar Environm. Microbiol. 2003 814 827

[147] M. Von Kleist, W. Huisinga J Pharmacokinet Pharmacodyn. 2007 789 806

[148] A.G. Knudson Nature Rev. Cancer 2001 157 162

[149] K. Kohn Mol. Biol. Cell 1999 2703 34

[150] K.W. Kohn, M.I. Aladjem, S. Kim, J.N. Weinstein, Y. Pommier Mol. Sys. Biol. 2006 1 12

[151] K.W. Kohn, M.I. Aladjem, J.N. Weinstein, Y. Pommier. Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell, 17 (2006), No. 1, 1–13.

[152] F. Kozusko, P.H. Chen, S.G. Grant, B.W. Day, J.C. Panetta Math. Biosci. 2001 1 16

[153] F. Kozusko, Z. Bajzer Math. Biosci. 2003 153 67

[154] A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell Science 2001 2511 15

[155] J.-J. Kupiec Molecular and General Genetics 1997 201 208

[156] J.-J. Kupiec, P. Sonigo. Ni Dieu ni gène. Pour une autre théorie de l'hérédité. Seuil, Paris, 2000.

[157] J.-J. Kupiec. L'origine des individus. Fayard, Paris, 2008.

[158] D.M. Kweekel, H. Gelderblom, H.-J. Guchelaar Canc. Treat. Rev. 2005 90 105

[159] D.M. Kweekel, H. Gelderblom, H.-J. Guchelaar Canc. Treat. Rev. 2008 655 669

[160] E. Laconi Bioessays 2007 738 44

[161] G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon Nature Genet. 2004 147 150

[162] L.G. Lajtha. On DNA labeling in the study of the dynamics of bone marrow cell populations. In: Stohlman, Jr., F. (Ed), The Kinetics of Cellular Proliferation, pp. 173-182, Grune and Stratton, New York, 1959.

[163] J.L. Lebowitz, S.I. Rubinow J. Math. Biol. 1974 17 36

[164] U. Ledzewicz, H. Schättler. Structure of optimal controls for a cancer chemotherapy model with PK/PD. In: Proceedings of the 43rd Conference on Decision and Control, Atlantis, Bahamas islands, pp. 1376–1381, IEEE Publishing, 2004.

[165] J.-C. Leloup, D. Gonze, A. Goldbeter J. Biol. Rhythms 1999 433 448

[166] J.-C. Leloup, A. Goldbeter Proc. Natl. Acad. Sci. USA 2003 7051 7056

[167] F. Lévi (Ed.). Cancer chronotherapeutics. Special issue of Chronobiology International, Vol. 19 (2002), No. 1.

[168] F. Lévi Cancer Causes Control 2006 611 621

[169] F. Lévi, G. Metzger, C. Massari, G. Milano Clin. Pharmacokinet. 2000 1 21

[170] F. Lévi, U. Schibler Ann. Rev. Pharmacol. Toxicol. 2007 493 528

[171] F. Lévi, A. Altinok, J. Clairambault, A. Goldbeter. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A, 366 (2008), No. 1880, 3575–3598.

[172] A.J. Levine, J. Momand, C.A. Finlay Nature 1991 453 456

[173] M. Loeffler, I. Roeder Cells Tissues Organs 2002 8 26

[174] X.M. Li, G. Metzger, E. Filipski, N. Boughattas, G. Lemaigre, B. Hecquet Tox. Appl. Pharmacol. 1997 281 290

[175] X.M. Li, G. Metzger, E. Filipski, G. Lemaigre, F. Lévi Arch.Toxicol. 1998 574 579

[176] D.B. Longley, D.P. Harkin, P.G. Johnston Nature Rev. Cancer 2003 330 338

[177] R.A. Lockshin, Z. Zakeri, J.L. Tilly (Eds.). When cells die. Wiley, New York, 1998.

[178] R.A. Lockshin, Z. Zakeri (Eds.). When cells die II. Wiley, New York, 2004.

[179] H. Lodish. Ed. Molecular Cell Biology. Freeman, New York, 2003.

[180] T.G. Lugo, A.M. Pendergast, A.J. Muller, O.N. Witte Science 1990 1079 1082

[181] A.G. Mckendrick Proc. Edinburgh Math. Soc. 1926 98 130

[182] M.C. Mackey Blood 1978 941 956

[183] M.C. Mackey. Dynamic hematological disorders of stem cell origin. In: G. Vassileva-Popova and E.V. Jensen (Eds). Biophysical and Biochemical Information Transfer in Recognition, pp. 373-409, Plenum Press, New York, 1979.

[184] M.C. Mackey, R. Rudnicki J. Math. Biol. 1994 89 109

[185] M.C. Mackey, R. Rudnicki.. A new criterion for the global stability of simultaneous cell replication and maturation process. J. Math. Biol., 38 (1999),195–219.

[186] M.C. Mackey Cell Prolif. 2001 71 83

[187] P. Macklin, S. Mcdougall, A.R.A Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub J. Math. Biol. 2009 765 98

[188] M.V. Maffini, J.M. Calabro, A.M. Soto, C. Sonnenschein Am. J. Pathol. 2005 1405 1410

[189] P. Magal, S.G. Ruan (Eds.). Structured population models in biology and epidemiology. Springer LN in Mathematics 1936, Springer, New York, 2008.

[190] P. Magni, M. Simeoni, I. Poggesi, M. Rocchetti Math. Biosci. 2006 127 51

[191] M. Malumbres, M. Barbacid. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer, 1 (2001), No. 3, 222–231.

[192] A. Marciniak-Czochra, T. Stiehl, A.D. Ho, W. Jäger, W. Wagner Stem Cells Dev. 2009 57 66

[193] J. Massagué Nature 2004 298 306

[194] T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, H. Okamura Science 2003 255 259

[195] L. Mazelin, A. Bernet, C. Bonod-Bidaud, L. Pays, S. Arnaud, C. Gespach, D.E. Bredesen, J.-Y. Scoazec, P. Mehlen Nature 2004 80 4

[196] P. Mehlen, C. Thibert Cell Mol Life Sci. 2004 1854 66

[197] S. Méléard, V.C. Tran J. Math. Biol. 2009 881 921

[198] J. Mendelsohn, J. Baselga J. Clin. Oncol. 2003 2787 2799

[199] J.A.J. Metz, O. Diekmann. The dynamics of physiologically structured populations. LN in biomathematics 68, Springer, New York, 1986.

[200] P. Michel, S. Mischler, B. Perthame J. Math. Pures et Appl. 2005 1235 1260

[201] G. Milano, J. Robert. Pharmaco génétique - pharmacogénomie, quelle est la différence ? Oncologie, 7 (2005), No. 1, 4–5.

[202] S. Mischler, B. Perthame, L. Ryzhik Mathematical Models and Methods in Applied Sciences (M3AS) 2002 1751 1772

[203] M. Mishima, G. Samimi, A. Kondo, X. Lin, S.B. Howell, The cellular pharmacology of oxaliplatin resistance. Eur. J. Cancer, 38 (2002), No. 10, 1405–1412.

[204] D. Morgan. The Cell Cycle: Principles of Control. Primers in Biology series, Oxford University Press, 2006.

[205] M.-C. Mormont, F. Lévi. Cancer chronotherapy: principles, applications and perspectives. Cancer, 97 (2003), No. 1,155–169.

[206] J.D. Murray. Mathematical biology, 2 vol., 3rd edition, Springer, New York, 2002, 2003.

[207] J.M. Murray Math. BioSci. 1994 183 193

[208] I.A. Nestorov, L.J. Aarons, P.A. Arundel, M. Rowland J Pharmacokinet Biopharm. 1998 21 46

[209] B. Novak, Z. Pataki, A. Ciliberto, J.J. Tyson Chaos 2001 277 286

[210] B. Novak, J.J. Tyson J. Theor. Biol. 2004 563 579

[211] B. Novak, J.J. Tyson Nature Rev. Mol. Cell Biol. 2008 981 991

[212] T. Oguri, T. Isobe, K. Fujitaka, N. Ishikawa, N. Kohno Int. J. Canc. 2001 584 589

[213] T. Oguri, Y. Bessho, H. Achiwa, H. Ozasa, K. Maeno, H. Maeda, S. Sato, R. Ueda Mol. Canc. Therap. 2007 122 127

[214] H. Okamura. Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harbor Symposia on quantitative biology, Vol. LXXII (2007), 551–556.

[215] J.M. Pacheco, A. Traulsen, D. Dingli. The allometry of chronic myeloid leukemia. J. Theor. Biol., (2009). [doi:10.1016/j.jtbi.2009.04.003].

[216] J.C. Panetta Math. Biosci. 2003 29 41

[217] B. Perthame. Transport equations in biology. Birkhäuser, Boston, 2007.

[218] B. Perthame, S. Génieys. Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Mathematical Modelling of Natural Phenomena, 2 (2007), No.4, 135–151.

[219] V.K. Piotrovsky Curr. Op. Drug Discov. Devel. 2000 314 319

[220] Y. Pommier Nature Rev. Cancer 2006 789 802

[221] C.S. Potten, M. Loeffler. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development ,110 (1990), No. 4, 1001–1020.

[222] C.S. Potten, C. Booth, D.M. Pritchard Int. J. Exp. Path. 1997 219 243

[223] L. Preziosi (Ed.). Cancer modelling and simulation. Chapman and Hall / CRC, New York, 2003.

[224] A. Quintas-Cardama, H.M. Kantardjian, J.E. Cortes. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control,16 (2009), No. 2, 122–31.

[225] D.A. Rand. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law. J. Roy. Soc. Interface, 5 (2008), Suppl. 1, S59–69.

[226] A. Rafii, et al. Oncologic trogocytosis of an original stromal cell induces chemoresistance of ovarian tumours. PLoS One, 3 (2008), No. 12, e3894, Dec. 2008. [doi:10.1371/journal.pone.0003894].

[227] F.I. Raynaud Clin. Canc. Res. 2005 4875 4888

[228] D.C. Rees, E. Johnson, O. Lewinson Nature Rev. Mol. Cell Biol. 2009 218 227

[229] S.M. Reppert, D.R. Weaver Nature 2002 935 941

[230] B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.-P. Boissel J. Theor. Biol. 2006 532 541

[231] T. Rich, P.F. Innominato, J. Boerner, M.-C. Mormont, S. Iacobelli, B. Baron, C. Jasmin, F. Lévi Clin. Cancer Res. 2005 1757 64

[232] N.R. Rodrigues, A. Rowan, M.E. Smith, I.B. Kerr, W.F. Bodmer, J.V. Gannon, D.P. Lane Proc. Natl. Acad. Sci. USA 1990 7555 7559

[233] I. Roeder, M. Loeffler Exp. Hematol. 2002 853 861

[234] M. Rotenberg J. Theor. Biol. 1983 181 199

[235] P. Ruoff, S. Mohsenzadeh, L. Rensing Naturwissenschaften 1996 514 7

[236] P. Ruoff, M. Vinsjevik, C. Monnerjahn, L. Rensing J. Theor. Biol. 2001 29 42

[237] A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, A. Miyawaki Cell 2008 487 98

[238] A. Sakaue-Sawano, K. Ohtawa, H. Hama, M. Kawano, M. Ogawa, A. Miyawaki Chem Biol. 2008 1243 8

[239] U. Schibler Science 2003 234 235

[240] D. Schiffer Neurol. Sci. 2005 5 12

[241] R.L. Schilsky, G.M. Milano, M.J. Ratain (Eds.). Principles of Antineoplastic Drug Development and Pharmacology. Marcel Dekker, New York, 1996.

[242] L.B. Sheiner, J.-L. Steimer Annu. Rev. Pharmacol. Toxicol. 2000 67 95

[243] J.A. Sherratt, M.A. Chaplain J. Math. Biol. 2001 291 312

[244] Y. Shiloh. ATM and related kinases: Safeguarding genome integrity. Nature Rev. Cancer, 3 (2003), No. 3,155-168, 2003.

[245] M. Simeoni, P. Magni Cancer Res. 2004 1094 1101

[246] R. Smaaland, O.D. Laerum, K. Lote, O. Sletvold, R.B. Sothern, R. Bjerknes Blood 1991 2603 2611

[247] C. Sonnenschein, A.M. Soto. Carcinogenesis and metastasis now in the third dimension - What's in it for pathologists? Am. J. Pathol., 168 (2006), No. 2, 363–366.

[248] C. Sonnenschein, A.M. Soto Seminars in cancer biology 2008 372 377

[249] A.M. Soto, C. Sonnenschein. The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays, 26 (2004), No. 10, 1097–1107.

[250] A.M. Soto, C. Sonnenschein, P.A. Miquel Acta biotheor. 2008 257 74

[251] F.X. Su, X.Q. Hu, W.J. Jia, C. Gong, E.W. Song, P. Hamar J. Surg. Res. 2003 102 108

[252] G.W. Swan, T.L. Vincent Bull. Math. Biol. 1977 317 337

[253] G.W. Swan. Applications of optimal control theory in biomedicine. Marcel Dekker, New York, 1984.

[254] K.R. Swanson, E.C. Alvord Jr, J.D. Murray Cell Prolif. 2000 317 29

[255] K.R. Swanson, C. Bridge, J.D. Murray, E.C. Alvord Jr J Neurol. Sci. 2003 1 10

[256] R. Tang, A.M. Faussat, J.-Y. Perrot, Z. Marjanovic, S. Cohen, T. Storme, H. Morjani, O. Legrand, J.-P. Marie BMC Cancer 2008 51

[257] T.N. Tozer, M. Rowland. Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy. Lippincott, Philadelphia, 2006.

[258] Y. Tsukamoto, Y. Kato, M. Ura, I. Horii, T. Ishikawa, H. Ishitsuka, Y. Sugiyama Biopharm Drug Dispos. 2001 1 14

[259] J.J. Tyson, C.I. Hong, C.D. Thron, B. Novak. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J.,77 (1999), No. 5, 2411–7.

[260] J.J. Tyson, K. Chen, B. Novak Nature Rev. Mol. Cell Biol. 2001 908 916

[261] P. Ubezio Disc. Cont. Dyn. Syst. B 2004 323 335

[262] K. Vanselow, J.T. Vanselow, P.O. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, A. Kramer Genes Dev. 2006 2660 2672

[263] J. Viguier Clin Cancer Res. 2005 6212 7

[264] B. Vogelstein, D. Lane, A.J. Levine Nature 2010 307 310

[265] H.M. Warenius, L. Seabra, L. Kyritsi, R. White, R. Dormer, S. Anandappa, C. Thomas, A. Howarth Int. J. Oncol. 2008 895 907

[266] F.M. Watt, B.L. Hogan Science 2000 1427 1430

[267] G.F. Webb Rocky Mountain J. Math. 1990 1195 1216

[268] R.A. Weinberg. One renegade cell: how cancer begins. Basic Books, New York, 1998.

[269] H.V. Westerhoff, B.O. Palsson Nature Biotechnol. 2004 1249 1252

[270] H.V. Westerhoff J. Math. Biol. 2007 147 150

[271] World Health Organisation (WHO). Preventing chronic diseases: a vital investment. (20055), Source: http://www.who.int/chp/chronic_disease_report/full_report.pdf 2005

[272] D. Wodarz, D. Killer Cell Dynamics. Springer, New York, 2007.

[273] M.W. Wu, L.J. Xian, X.M. Li, P. Innominato, F. Lévi Ai Zheng (Chinese Journal of Cancer) 2004 235 242

[274] C. Wyman, R. Kanaar Annu. Rev. Genet. 2006 363 383

[275]

[276] S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, H. Okamura Science 2003 1408 12

[277] S. You, P.A. Wood, Y. Xiong, M. Kobayashi, J. Du Quiton, W.J.M. Hrushesky Breast Canc. Res. Treatment 2005 47 60

[278] J. Zamborsky, C.I. Hong, A. Csikasz-Nagy J. Biol. Rhythms 2007 542 553

[279] A. Zetterberg, O. Larsson, K.G. Wiman. What is the restriction point? Curr. Opin. Cell Biol., 7 (1995), No. 6, 835–42.

[280] L. Zitvogel, A. Tesniere, G. Kroemer Nature Rev. Immunol. 2006 715 727

[281] L. Zitvogel, L. Apetoh, F. Ghiringhelli, G. Kroemer Nature Rev. Immunol. 2008 59 73

[282] L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. André, A. Tesniere, G. Kroemer. The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest., 118 (2008), No. 6, 1991–2001.

Cité par Sources :