New Computational Tools for Modeling Chronic Myelogenous Leukemia
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 119-139.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we consider a system of nonlinear delay-differential equations (DDEs) which models the dynamics of the interaction between chronic myelogenous leukemia (CML), imatinib, and the anti-leukemia immune response. Because of the chaotic nature of the dynamics and the sparse nature of experimental data, we look for ways to use computation to analyze the model without employing direct numerical simulation. In particular, we develop several tools using Lyapunov-Krasovskii analysis that allow us to test the robustness of the model with respect to uncertainty in patient parameters. The methods developed in this paper are applied to understanding which model parameters primarily affect the dynamics of the anti-leukemia immune response during imatinib treatment. The goal of this research is to aid the development of more efficient modeling approaches and more effective treatment strategies in cancer therapy.
DOI : 10.1051/mmnp/20094206

M. M. Peet 1 ; P. S. Kim 2 ; S.-I. Niculescu 3 ; D. Levy 4

1 Illinois Institute of Technology, Chicago, USA
2 Department of Mathematics, University of Utah, Salt Lake City 84102, USA
3 Laboratoire des Signaux et Systèmes, CNRS-Supélec, 91192 Gif-sur-Yvette, France
4 Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park 20742, USA
@article{MMNP_2009_4_2_a5,
     author = {M. M. Peet and P. S. Kim and S.-I. Niculescu and D. Levy},
     title = {New {Computational} {Tools} for {Modeling} {Chronic} {Myelogenous} {Leukemia}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2009},
     doi = {10.1051/mmnp/20094206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094206/}
}
TY  - JOUR
AU  - M. M. Peet
AU  - P. S. Kim
AU  - S.-I. Niculescu
AU  - D. Levy
TI  - New Computational Tools for Modeling Chronic Myelogenous Leukemia
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 119
EP  - 139
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094206/
DO  - 10.1051/mmnp/20094206
LA  - en
ID  - MMNP_2009_4_2_a5
ER  - 
%0 Journal Article
%A M. M. Peet
%A P. S. Kim
%A S.-I. Niculescu
%A D. Levy
%T New Computational Tools for Modeling Chronic Myelogenous Leukemia
%J Mathematical modelling of natural phenomena
%D 2009
%P 119-139
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094206/
%R 10.1051/mmnp/20094206
%G en
%F MMNP_2009_4_2_a5
M. M. Peet; P. S. Kim; S.-I. Niculescu; D. Levy. New Computational Tools for Modeling Chronic Myelogenous Leukemia. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 119-139. doi : 10.1051/mmnp/20094206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094206/

[1] M. Adimy, L. Pujo-Menjouet. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electronic Journal of Differential Equations, (2003) No. 107, 1–14.

[2] E.P. Alyea, R.J. Soiffer, C. Canning, D. Neuberg, R. Schlossman, C. Pickett, H. Collins, Y. Wang, K.C. Anderson, J. Ritz Blood 1998 3671 3680

[3] G.R. Angstreich, B.D. Smith, R.J. Jones Curr. Opin. Oncol. 2004 95 99

[4] R. Antia, C.T. Bergstrom, S.S. Pilyugin, S.M. Kaech, R. Ahmed. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol., 221 (2003), No. 4, 585–598.

[5] A. Bagg J. Mol. Diagn. 2002 1 10

[6] S.J. Benson, Y. Ye", DSDP5: Software For semidefinite programming. (Sept. 2005) Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, ANL/MCS-P1289-0905, http://www.mcs.anl.gov/ benson/dsdp, (Submitted to ACM Transactions on Mathematical Software).

[7] D.L. Chao, S. Forrest, M.P. Davenport, A.S. Perelson Proc. IEEE Comput. Soc. Bioinform. Conf. 2003 124 131

[8] C.I. Chen, H.T. Maecker, P.P. Lee Blood 2008 5342 5349

[9] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117–132.

[10] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis–II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133–146.

[11] R.H. Collins J. Clin. Oncol. 1997 433 444

[12] J. Cortes, M. Talpaz, S. O'Brien, D. Jones, R. Luthra, J. Shan, F. Giles, S. Faderl, S. Verstovsek, G. Garcia-Manero, M.B. Rios, H. Kantarjian Clin. Cancer Res. 2005 3425 3432

[13] S.M. Kaech, R. Ahmed Nat. Immunol. 2001 415 422

[14] P.S. Kim. Mathematical Models of the Activation and Regulation of the Immune System. PhD thesis, Stanford University (2007).

[15] T. Klingebiel, P.G. Schlegel. GVHD: overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplant., 21 (1998), Suppl. 2, S45–S49.

[16] H.J. Kolb, A. Schattenberg, J.M. Goldman, B. Hertenstein, N. Jacobsen, W. Arcese, P. Ljungman, A. Ferrant, L. Verdonck, D. Niederwieser, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia". Blood, 86 (1995), No. 5, 2041–2050.

[17] N.L. Komarova, D. Wodarz Proc. Natl. Acad. Sci. USA 2005 9714 9719

[18] N.N. Krasovskii. Stability of Motion. Stanford University Press, 1963.

[19] C.A. Kreuzer, J. Schmidt, T.K. Schetelig, C. Held, G. Thiede, W. Ehninger Eur. J. Haematol. 2002 7 10

[20] S.J Lee Br. J. Haematol. 2000 993 1009

[21] T. Luzyanina, K. Engelborghs, S. Ehl, P. Klenerman, G. Bocharov Math. Biosci. 2004 1 23

[22] W.A.E. Marijt, M.H.M. Heemskerk, F.M. Kloosterboer, E. Goulmy, M.G.D Kester, M.A.W.G. Van Der Hoorn, S.A.P. Van Luxemburg-Heys, M. Hoogeboom, T. Mutis, J.W. Drijfhout, J.J. Van Rood, R. Willemze, J.H.F. Falkenburg Proc. Natl. Acad. Sci. USA 2003 2742 2747

[23] F. Mazenc, P.S. Kim, S.-I. Niculescu. Stability of a combined Gleevec and immune model involving delays: linear and global analysis. Proceedings of the 47th IEEE Conference on Decision and Control (2008).

[24] R. Mercado, S. Vijh, S.E. Allen, K. Kerksiek, I.M. Pilip, E.G. Pamer J. Immunol. 2000 6833 6839

[25] F. Michor, T.P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C.L. Sawyers, M.A. Nowak Nature 2005 1267 1270

[26] J.J. Molldrem, P.P. Lee, C. Wang, K. Felio, H.M. Kantarjian, R.E. Champlin, M.M. Davis Nat. Med. 2000 1018 1023

[27] H. Moore, N.K. Li J. Theor. Biol. 2004 513 523

[28] K. Murali-Krishna, J.D. Altman, M. Suresh, D.J.D. Sourdive, D.J.D. Zajac, J.D. Miller, J. Slansky, R. Ahmed Immunity 1998 177 187

[29] B. Neiman. A mathematical model of chronic myelogenous leukaemia. Master's thesis University College, Oxford University, (2002).

[30] P.W. Nelson, A.S. Perelson Math. Biosci. 2002 73 94

[31] S. Niculescu, P.S. Kim, D. Levy, P.P. Lee. On stability of a combined Gleevec and immune model of chronic myelogenous leukemia: exploiting delay system structure. Proceedings of 2007 IFAC Symposium on Nonlinear Control (2007).

[32] A. Papachristodoulou, M.M. Peet, S. Lall. Stability Analysis of Nonlinear Time-Delay Systems. IEEE Transactions on Automatic Control (Special Issue on Positive Polynomials in Control), 2009.

[33] P. Paschka, M.C. Muller, K. Merx, S. Kreil, C. Schoch, T. Lahaye, A. Weisser, A. Petzold, H. Konig, U. Berger, H. Gschaidmeier, R. Hehlmann, A. Hochhaus. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia, 17 (2003), No. 9, 1687–1694.

[34] M.M. Peet. Web site for Matthew M. Peet. http://mmae.iit.edu/ mpeet, (2009).

[35] M.M. Peet, A. Papachristodoulou, S. Lall SIAM Journal on Control and Optimization 2009 3237 3258

[36] A.S. Perelson, G. Weisbuch. Immunology for Physicists Rev. Mod. Phys., 69 (1997), No. 4, 1219–1267.

[37] L. Pujo-Menjouet, M.C. Mackey Comptes Rendus Biologiques 2004 235 244

[38] I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M.C. Mueller, M. Loeffler Nat. Med. 2006 1181 1184

[39] C.L. Sawyers New Engl. J. Med. 1999 1330 1340

[40] C.L. Sawyers, A. Hochhaus, E. Feldman, J.M. Goldman, C.B. Miller, O.G. Ottmann, C.A. Schiffer, M. Talpaz, F. Guilhot, M.W. Deininger, T. Fischer, S.G. O'Brien, R.M. Stone, C.B. Gambacorti-Passerini, N.H. Russell, J.J. Reiffers, T.C. Shea, B. Chapuis, S. Coutre, S. Tura, E. Morra, R.A. Larson, A. Saven, C. Peschel, A. Gratwohl, F. Mandelli, M. Ben-Am, I. Gathmann, R. Capdeville, R.L. Paquette, B.J. Druker", Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 99 (2002), No. 10, 3530–3539.

[41] C.A. Schiffer, R. Hehlmann, R. Larson Leukemia 2003 691 699

[42] G. Stengle Mathematische Annalen 1973 87 97

[43] J.F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, (1999), vol. 11–12, 625-653, Version 1.05 available at http://fewcal.kub.nl/sturm/software/sedumi.html.

[44] S.F.T. Thijsen, G.J. Schuurhuis, J.W. Van Oostveen, G.J. Ossenkoppele Leukemia 1999 1646 1674

[45] M. Uzunel, J. Mattsson, M. Brune, J-E. Johansson, J. Aschan, O. Ringden Blood 2003 469 472

[46] M.J. Van Stipdonk, E.E. Lemmens, S.P. Schoenberger Nat. Immunol. 2001 423 429

[47] M. Villasana, A. Radunskaya J. Math. Biol. 2003 270 294

Cité par Sources :