Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2009_4_2_a4, author = {J. Li and X. Zou}, title = {Generalization of the {Kermack-McKendrick} {SIR} {Model} to a {Patchy} {Environment} for a {Disease} with {Latency}}, journal = {Mathematical modelling of natural phenomena}, pages = {92--118}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2009}, doi = {10.1051/mmnp/20094205}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094205/} }
TY - JOUR AU - J. Li AU - X. Zou TI - Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency JO - Mathematical modelling of natural phenomena PY - 2009 SP - 92 EP - 118 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094205/ DO - 10.1051/mmnp/20094205 LA - en ID - MMNP_2009_4_2_a4 ER -
%0 Journal Article %A J. Li %A X. Zou %T Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency %J Mathematical modelling of natural phenomena %D 2009 %P 92-118 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094205/ %R 10.1051/mmnp/20094205 %G en %F MMNP_2009_4_2_a4
J. Li; X. Zou. Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 92-118. doi : 10.1051/mmnp/20094205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094205/
[1] R. M. Anderson, R. M. May. Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford, UK, 1991.
[2] J. Arino, P. van den Driessche. A multi-city epidemic model. Math. Popul. Stud., 10 (2003), 175-193.
[3] J. Arino, P. van den Driessche. The basic reproduction number in a multi-city compartmental epidemic model. LNCIS, 294 (2003), 135-142.
[4] F. Brauer. Some simple epidemic models. Math. Biosci. Engin., 3 (2006), 1-15.
[5] O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, 2000.
[6] J. K. Hale, S. M. Verduyn Lunel. Introduction to functional differential equations. Spring-Verlag, New York, 1993.
[7] W. O. Kermack, A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. Royal Soc. London, 115 (1927), 700-721.
[8] Y.-H. Hsieh, P. van den Driessche, L. Wang. Impact of travel between patches for spatial spread of disease. Bull. Math. Biol., 69 (2007), 1355-1375.
[9] J. A. J. Metz, O. Diekmann. The dynamics of physiologically structured populations. Springer-Verlag, New York, 1986.
[10] K. Mischaikow, H. Smith, H. R. Thieme. Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions. Trans. Amer. Math. Soc., 347 (1995), 1669-1685.
[11] J. D. Murray. Mathematical biology. 3rd ed., Springer-Verlag, New York, 2002.
[12] M. Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Disc. Cont. Dynam. Syst. Ser. B, 6 (2006), 185-202.
[13] H. R. Thieme, C. Castillo-Chavez. Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics (O. Arino, D. Axelrod, M. Kimmel, M. Langlais eds.), pp. 33-50, Wuerz, 1995.
[14] W. Wang, X.-Q. Zhao. An epidemic model in a patchy environment. Math. Biosci., 190 (2004), 97-112.
[15] W. Wang, X.-Q. Zhao. An age-structured epidemic model in a patchy environment. SIAM J. Appl. Math., 65 (2005), 1597-1614.
[16] W. Wang, X.-Q. Zhao. An epidemic model with population dispersal and infection period. SIAM J. Appl. Math., 66 (2006), 1454-1472.
Cité par Sources :