On the Dynamics of an Impulsive Model of Hematopoiesis
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 68-91.

Voir la notice de l'article provenant de la source EDP Sciences

We propose and analyze a nonlinear mathematical model of hematopoiesis, describing the dynamics of stem cell population subject to impulsive perturbations. This is a system of two age-structured partial differential equations with impulses. By integrating these equations over the age, we obtain a system of two nonlinear impulsive differential equations with several discrete delays. This system describes the evolution of the total hematopoietic stem cell populations with impulses. We first examine the asymptotic behavior of the model in the absence of impulsions. Secondly, we add the impulsive perturbations and we investigate the qualitative behavior of the model including the global asymptotic stability of the trivial solution and the existence of periodic solution in the case of periodic impulsive perturbations. Finally, numerical simulations are carried out to illustrate the behavior of the model. This study maybe helpful to understand the reactions observed in the hematopoietic system after different forms of stress as direct destruction by some drugs or irradiation.
DOI : 10.1051/mmnp/20094204

C. Kou 1 ; M. Adimy 2 ; A. Ducrot 3

1 Department of Applied Mathematics, Donghua University, Shanghai 201620, P. R. China
2 Laboratoire de Mathématiques Appliquées, UMR CNRS 5142 & INRIA, ANUBIS, Université de Pau, 64000 Pau, France
3 Institut Mathématiques de Bordeaux, UMR CNRS 5251 & INRIA, ANUBIS Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
@article{MMNP_2009_4_2_a3,
     author = {C. Kou and M. Adimy and A. Ducrot},
     title = {On the {Dynamics} of an {Impulsive} {Model} of {Hematopoiesis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {68--91},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2009},
     doi = {10.1051/mmnp/20094204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094204/}
}
TY  - JOUR
AU  - C. Kou
AU  - M. Adimy
AU  - A. Ducrot
TI  - On the Dynamics of an Impulsive Model of Hematopoiesis
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 68
EP  - 91
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094204/
DO  - 10.1051/mmnp/20094204
LA  - en
ID  - MMNP_2009_4_2_a3
ER  - 
%0 Journal Article
%A C. Kou
%A M. Adimy
%A A. Ducrot
%T On the Dynamics of an Impulsive Model of Hematopoiesis
%J Mathematical modelling of natural phenomena
%D 2009
%P 68-91
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094204/
%R 10.1051/mmnp/20094204
%G en
%F MMNP_2009_4_2_a3
C. Kou; M. Adimy; A. Ducrot. On the Dynamics of an Impulsive Model of Hematopoiesis. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 68-91. doi : 10.1051/mmnp/20094204. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094204/

[1] M. Adimy, F. Crauste Nonlinear Analysis 2003 1469 1491

[2] M. Adimy, F. Crauste Nonlinear Analysis: Real World Applications 2005 337 366

[3] M. Adimy, F. Crauste, L. Pujo-Menjouet Discret. Cont. Dyn. Sys. Ser. A 2005 501 522

[4] M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328-1352 .

[5] M. Adimy Discret. Cont. Dyn. Sys. B 2003 439 456

[6] S. Bernard, J. Belair, M.C. Mackey J. Theor. Biol. 2003 283 298

[7] S. Bernard, J. Belair, M.C. Mackey C. R. Biologies 2004 201 210

[8] F.J. Burns, I.F. Tannock Cell. Tissue Kinet. 1970 321 334

[9] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117-132.

[10] C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133-146.

[11] J.J. Ferrell TIBS 1996 460 466

[12] K. Gopalsamy, B.G. Zhang J. Math. Anal. Appl. 1989 110 122

[13] I. Gyori, G. Ladas. Oscillation theory of delay differential equations with applications. Clarendon, Oxford, 1991.

[14] J. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993.

[15] C. Haurie, D.C. Dale, M.C. Mackey Blood 1998 2629 2640

[16] Y. Kuang. Delay differential equations with application in population dynamics. Academic Press. Boston, MA, 1993.

[17] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. Theory of impulsive differential equations. World Scientific. Singapore, 1989.

[18] M. Loeffler, H.E. Wichmann Cell Tissue Kinet. 1980 543 561

[19] M.C. Mackey Blood 1978 941 956

[20] M.C. Mackey. Dynamic hematological disorders of stem cell origin. In Biophysical and Biochemical Information Transfer in Recognition, J.G. Vassileva-Popova and E.V. Jensen, eds., Plenum Publishing, New York, 1979, 373-409.

[21] M.C. Mackey. Mathematical models of hematopoietic cell replication and control. in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, Prentice-Hall, Upper Saddle River, NJ, 1997, 149-178.

[22] M.C. Mackey, L. Pujo-Menjouet, J. Wu SIAM J. Math. Anal. 2006 166 187

[23] M.C. Mackey, A. Rey Physica D 1995 373 395

[24] M.C. Mackey, R. Rudnicki J. Math. Bio. 1994 89 109

[25] L. Pujo-Menjouet, M.C. Mackey C. R. Biologies 2004 235 244

[26] L. Pujo-Menjouet, S. Bernard, M.C. Mackey SIAM J. Appl. Dynam. Systems 2005 312 332

[27] S.I. Rubino, J.L. Lebowitz J. Math. Bio. 1975 187 225

[28] L. Sachs C. R. Acad. Sci. Paris 1993 882 891

[29] S.H. Saker, J.O. Alzabut Nonlinear Analysis: real world applications 2007 1029 1039

[30] G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Monogr. Textbooks Pure Appl. Math., 89, Dekker, New York, 1985.

[31] J. Yan, A. Zhao J. Math. Anal. Appl. 1998 187 194

[32] J. Yan, A. Zhao, J.J. Nieto. Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra Systems. Mathematical and Computer Modelling, 40 (2004), No 5-6, 509-518.

Cité par Sources :