Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 48-67.

Voir la notice de l'article provenant de la source EDP Sciences

Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some competition systems. However, the problem on the uniqueness of traveling wave (for a fixed wave speed) remains unsolved. In this paper, we show that, for a class of monotone diffusion systems with time delayed reaction term, the mono-stable traveling wave font is unique whenever it exists.
DOI : 10.1051/mmnp/20094203

W. Huang 1 ; M. Han 2 ; M. Puckett 1

1 Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
2 Department of Mathematics, Sanghai Normal University Shangai, China
@article{MMNP_2009_4_2_a2,
     author = {W. Huang and M. Han and M. Puckett},
     title = {Uniqueness of {Monotone} {Mono-stable} {Waves} for {Reaction-Diffusion} {Equations} with {Time} {Delay}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--67},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2009},
     doi = {10.1051/mmnp/20094203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/}
}
TY  - JOUR
AU  - W. Huang
AU  - M. Han
AU  - M. Puckett
TI  - Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 48
EP  - 67
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/
DO  - 10.1051/mmnp/20094203
LA  - en
ID  - MMNP_2009_4_2_a2
ER  - 
%0 Journal Article
%A W. Huang
%A M. Han
%A M. Puckett
%T Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay
%J Mathematical modelling of natural phenomena
%D 2009
%P 48-67
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/
%R 10.1051/mmnp/20094203
%G en
%F MMNP_2009_4_2_a2
W. Huang; M. Han; M. Puckett. Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 48-67. doi : 10.1051/mmnp/20094203. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/

[1] A. Berman, R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.

[2] J. Carr, A. Chmaj Proc. Amer. Math. Soc. 2004 2433 2439

[3] T. Faria, W. Huang, J. Wu Proc. Royal Society A 2006 229 261

[4] W. Huang J. Diff. Equations 2000 91 139

[5] W. Huang, M. Pucket. A note on uniqueness of monotone mono-stable waves for reaction-diffusion equations. Inter. J. Qualitative Theory of Diff. Equations and App., in press (2008).

[6] H. Thieme, X-Q. Zhao. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Diff. Equations, 195(2003), 430–470.

[7] V.I. Volpert, V.A. Volpert, V.A. Volpert. Traveling wave solutions of parabolic systems. Translations of Math. Monographs, 140, Amer. Math. Soc., Providence, 1994.

[8] J. Wu. Theory and applications of partial functional differential equations. Applied Mathematical Science, Vol. 119, Springer, Berlin, 1996.

[9] J. Wu, X. Zou. Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method. Proc. Amer. Math. Soc., 125 (1997) 2589-2598.

Cité par Sources :