Voir la notice de l'article provenant de la source EDP Sciences
W. Huang 1 ; M. Han 2 ; M. Puckett 1
@article{MMNP_2009_4_2_a2, author = {W. Huang and M. Han and M. Puckett}, title = {Uniqueness of {Monotone} {Mono-stable} {Waves} for {Reaction-Diffusion} {Equations} with {Time} {Delay}}, journal = {Mathematical modelling of natural phenomena}, pages = {48--67}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2009}, doi = {10.1051/mmnp/20094203}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/} }
TY - JOUR AU - W. Huang AU - M. Han AU - M. Puckett TI - Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay JO - Mathematical modelling of natural phenomena PY - 2009 SP - 48 EP - 67 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/ DO - 10.1051/mmnp/20094203 LA - en ID - MMNP_2009_4_2_a2 ER -
%0 Journal Article %A W. Huang %A M. Han %A M. Puckett %T Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay %J Mathematical modelling of natural phenomena %D 2009 %P 48-67 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/ %R 10.1051/mmnp/20094203 %G en %F MMNP_2009_4_2_a2
W. Huang; M. Han; M. Puckett. Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 48-67. doi : 10.1051/mmnp/20094203. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094203/
[1] A. Berman, R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.
[2] Proc. Amer. Math. Soc. 2004 2433 2439
,[3] Proc. Royal Society A 2006 229 261
, ,[4] J. Diff. Equations 2000 91 139
[5] W. Huang, M. Pucket. A note on uniqueness of monotone mono-stable waves for reaction-diffusion equations. Inter. J. Qualitative Theory of Diff. Equations and App., in press (2008).
[6] H. Thieme, X-Q. Zhao. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Diff. Equations, 195(2003), 430–470.
[7] V.I. Volpert, V.A. Volpert, V.A. Volpert. Traveling wave solutions of parabolic systems. Translations of Math. Monographs, 140, Amer. Math. Soc., Providence, 1994.
[8] J. Wu. Theory and applications of partial functional differential equations. Applied Mathematical Science, Vol. 119, Springer, Berlin, 1996.
[9] J. Wu, X. Zou. Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method. Proc. Amer. Math. Soc., 125 (1997) 2589-2598.
Cité par Sources :