Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2009_4_2_a0, author = {S. A. Campbell and R. Jessop}, title = {Approximating the {Stability} {Region} for a {Differential} {Equation} with a {Distributed} {Delay}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--27}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2009}, doi = {10.1051/mmnp/20094201}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094201/} }
TY - JOUR AU - S. A. Campbell AU - R. Jessop TI - Approximating the Stability Region for a Differential Equation with a Distributed Delay JO - Mathematical modelling of natural phenomena PY - 2009 SP - 1 EP - 27 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094201/ DO - 10.1051/mmnp/20094201 LA - en ID - MMNP_2009_4_2_a0 ER -
%0 Journal Article %A S. A. Campbell %A R. Jessop %T Approximating the Stability Region for a Differential Equation with a Distributed Delay %J Mathematical modelling of natural phenomena %D 2009 %P 1-27 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094201/ %R 10.1051/mmnp/20094201 %G en %F MMNP_2009_4_2_a0
S. A. Campbell; R. Jessop. Approximating the Stability Region for a Differential Equation with a Distributed Delay. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 1-27. doi : 10.1051/mmnp/20094201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094201/
[1] SIAM J. Appl. Math. 2005 1328 1352
, ,[2] Nonl. Anal.: Real World Appl. 2005 651 670
, ,[3] J. Arino, P. van den Driessche. Time delays in epidemic models: modeling and numerical considerations, in Delay differential equations and applications, chapter 13, 539–558. Springer, Dordrecht, 2006.
[4] Phys. Rev. Lett. 2003 094101
[5] J. Diff. Eqs. 2006 190 209
[6] DCDS 2008 197 205
[7] DCDS 2001 233 256
, ,[8] F. Brauer, C. Castillo-Chávez. Mathematical models in population biology and epidemiology. Springer, New York, 2001.
[9] S.A. Campbell, I. Ncube. Some effects of gamma distribution on the dynamics of a scalar delay differential equation. Preprint, (2009).
[10] Neur. Net. 2002 867 871
[11] IEEE Trans. Circuits Syst.-I 2006 351 357
[12] R.V. Churchill, J.W. Brown. Complex variables and applications. McGraw-Hill, New York, 1984.
[13] J. Math. Anal. Appl. 1982 592 627
,[14] J.M. Cushing. Integrodifferential equations and delay models in population dynamics, Vol. 20 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, New York, 1977.
[15] J. Diff. Eqs. 2008 1049 1079
,[16] K. Gopalsamy. Stability and oscillations in delay differential equations of population dynamics. Kluwer, Dordrecht, 1992.
[17] Physica D 1994 344 358
,[18] R.V. Hogg and A.T. Craig. Introduction to mathematical statistics. Prentice Hall, United States, 1995.
[19] Ann. N.Y. Acad. Sci. 1948 221 246
[20] Phys. Rev. Lett. 2004 070602
,[21] K. Koch. Biophysics of computation: information processing in single neurons. Oxford University Press, New York, 1999.
[22] Y. Kuang. Delay differential equations: with applications in population dynamics, Vol. 191 of Mathematics in Science and Engineering. Academic Press, New York, 1993.
[23] Physica D 2001 123 141
, ,[24]
[25] N. MacDonald. Biological delay systems: linear stability theory. Cambridge University Press, Cambridge, 1989.
[26] J. Math. Biol. 1984 211 225
[27] J.M. Milton. Dynamics of small neural populations, Vol. 7 of CRM monograph series. American Mathematical Society, Providence, 1996.
[28] S. Ruan. Delay differential equations for single species dynamics, in Delay differential equations and applications, chapter 11, 477–515. Springer, Dordrecht, 2006.
[29] Physica D 2004 323 342
,[30] Complexity 2003 102 108
, ,[31] SIAM J. Appl. Math. 1997 1281 1310
, ,[32] J. Math. Biol. 1999 285 316
, ,[33] J. Theoret. Biol. 2008 238 252
Cité par Sources :