A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 163-182.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.
DOI : 10.1051/mmnp/20094108

V. Lleras 1

1 Laboratoire de mathématiques, Université de Besançon, CNRS UMR 6623, 16 route de Gray, 25030 Besançon Cedex, France
@article{MMNP_2009_4_1_a7,
     author = {V. Lleras},
     title = {A {Stabilized} {Lagrange} {Multiplier} {Method} for the {Finite} {Element} {Approximation} of {Frictional} {Contact} {Problems} in {Elastostatics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {163--182},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094108/}
}
TY  - JOUR
AU  - V. Lleras
TI  - A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 163
EP  - 182
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094108/
DO  - 10.1051/mmnp/20094108
LA  - en
ID  - MMNP_2009_4_1_a7
ER  - 
%0 Journal Article
%A V. Lleras
%T A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
%J Mathematical modelling of natural phenomena
%D 2009
%P 163-182
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094108/
%R 10.1051/mmnp/20094108
%G en
%F MMNP_2009_4_1_a7
V. Lleras. A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 163-182. doi : 10.1051/mmnp/20094108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094108/

[1] R.A. Adams. Sobolev spaces, Academic Press, 1975.

[2] P. Alart, A. Curnier J. Mecan. Theor. Appl. 1988 67 82

[3] I. Babuška Numer. Math. 1973 179 192

[4] H.J.C. Barbosa, T.J.R. Hughes Comput. Methods Appl. Mech. Engrg. 1991 109 128

[5] H.J.C. Barbosa, T.J.R. Hughes Numer. Math. 1992 1 15

[6] H.J.C. Barbosa, T.J.R. Hughes Comput. Methods Appl. Mech. Engrg. 1992 193 210

[7] R. Becker, P. Hansbo, R. Stenberg Math. Model. Numer. Anal. 2003 209 225

[8] Z. Belhachmi, F. Ben Belgacem Math. Comp. 2003 83 104

[9] Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski SIAM J. Numer. Anal. 2005 1295 1320

[10] F. Ben Belgacem, Y. Renard Math. Comp. 2003 1117 1145

[11] S.C. Brenner, L.R. Scott. The mathematical theory of finite element methods, Springer-Verlag, 2002.

[12] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. Franç. Automatique Inform. Rech. Opér., Sér. Rouge Anal. Numér., 8 (1974), 129–151.

[13] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods, Springer, 1991.

[14] Z. Chen Numer. Math. 2001 641 659

[15] P.G. Ciarlet. The finite element method for elliptic problems, in Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions, North Holland, 2 (1991), 17–352.

[16] M. Cocou, R. Roccou SIAM J. Numer. Anal. 2001 1324 1342

[17] P. Coorevits, P. Hild, M. Hjiaj SIAM J. Sci. Comput. 2001 976 999

[18] P. Coorevits, P. Hild, K. Lhalouani, T. Sassi Math. Comp. 2002 1 25

[19] G. Duvaut. Problèmes unilatéraux en mécanique des milieux continus, in Actes du congrès international des mathématiciens (Nice 1970), Gauthier-Villars, 3 (1971), 71–77.

[20] G. Duvaut, J.L. Lions. Les inéquations en mécanique et en physique, Dunod, 1972.

[21] C. Eck, J. Jarušek Math. Models Meth. Appl. Sci. 1998 445 468

[22] C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics, CRC Press, 270 (2005).

[23] W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002.

[24] P. Hansbo, C. Lovadina, I. Perugia, G. Sangalli Numer. Math. 2005 91 115

[25] J. Haslinger Math. Methods Appl. Sci. 1983 422 437

[26] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Eds. P.G. Ciarlet and J.-L. Lions, North Holland, 4 (1996), 313–485.

[27] J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method, submitted.

[28] R. Hassani, P. Hild, I. Ionescu, N.D. Sakki Comput. Methods Appl. Mech. Engrg. 2003 4517 4531

[29] P. Heintz, P. Hansbo Comput. Methods Appl. Mech. Engrg. 2006 4323 4333

[30] P. Hild Q. Jl. Mech. Appl. Math. 2004 225 235

[31] P. Hild Z. Angew. Math. Mech. 2005 673 680

[32] P. Hild, P. Laborde Appl. Numer. Math. 2002 401 421

[33] P. Hild, Y. Renard SIAM J. Numer. Anal. 2007 2012 2031

[34] P. Hild, Y. Renard. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, submitted.

[35] J. Jarušek Czechoslovak. Math. J. 1983 237 261

[36] N. Kikuchi, J.T. Oden. Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM, 1988.

[37] D. Kinderlehrer, G. Stampacchia. An introduction to variational inequalities and their applications, Pure and Applied mathematics, Academic Press, New York-London, 1980.

[38] T. Laursen. Computational contact and impact mechanics, Springer, 2002.

[39] J.–L. Lions, E. Magenes. Problèmes aux limites non homogènes, Dunod, 1968.

[40] V. Lleras. Thesis, in preparation.

[41] V.G. Maz'ya, T.O. Shaposhnikova. Theory of multipliers in spaces of differentiable functions, Pitman, 1985.

[42] N. Moës, J. Dolbow, T. Belytschko Int. J. Numer. Meth. Engng. 1999 131 150

[43] J. Nečas, J. Haslinger, J. Jarušek Bolletino U. M. I. 1980 796 811

[44] J. Nitsche Abh. Math. Univ. Hamburg 1971 9 15

[45] D.R.J. Owen, D. Peric Int. J. Num. Meth. Eng. 1992 1289 1309

[46] Y. Renard SIAM J. Math. Anal. 2006 452 467

[47] M. Shillor, M. Sofonea, J.J. Telega. Models and analysis of quasistatic contact. Variational methods, Springer, 2004.

[48] R. Stenberg J. Comput. Appl. Math. 1995 139 148

[49] P. Wriggers. Computational Contact Mechanics, Wiley, 2002.

Cité par Sources :